• Title/Summary/Keyword: 두부방사선계측

Search Result 295, Processing Time 0.025 seconds

The comparison of landmark identification errors and reproducibility between conventional lateral cephalometric radiography and digital lateral cephalometric radiography (일반두부방사선계측사진과 디지털방사선계측사진의 계측점 식별의 오차 및 재현성에 관한 비교 연구)

  • Lee, Yang-Ku;Yang, Won-Sik;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.79-89
    • /
    • 2002
  • The purpose of this study is to evaluate the reproducibility and errors in landmark identification of conventional lateral cephalometric radiography and digital lateral cephalometric radiography. Fifteen conventional lateral cephalometric radiographs and fifteen digital lateral cephalometric radiographs were selected in adults with no considerations on sex and craniofacial forms. Each landmark was identified and expressed as the coordinate (x, y). The landmarks were classified into 3 groups. The landmarks of the first identification was T1, identification after one week was T2, and identification after one month was T3. The mean and standard deviation of identification errors between replicates were calculated according to the x and y coordinates. The errors between first identification and second identification were expressed as T2-T1(x), T2-T1(y) and those between first identification and third identification were expressed as T3-T1(x), T2-T1(y). Each was divided into conventional lateral cephalometric radiography and digital lateral cephalometric radiography. The independent t- test was used for statistical analysis of identification errors for the evaluation of reproducibility. The results of this study were as follows ; 1. Generally, the mean and standard deviation of landmark identification errors in digital lateral cephalometric radiography was smaller than those of conventional lateral cephalometric radiography. 2. Only a few landmarks showed statistically significant difference in identification error between conventional lateral cephalometric radiography and digital lateral cephalometric radiography. 3. The enhancement of image quality didn't guarantee decrease in landmark identification error and didn't affect tendency of landmark identification error.

The reliability of the cephalogram generated from cone-beam CT (Cone-beam CT로부터 제작된 측모 두부계측방사선사진의 정확도 평가)

  • Kang, Ji-Young;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.391-399
    • /
    • 2007
  • Three-dimensional approaches for the diagnosis and analysis of the dentofacial area are becoming more popular in accordance with the development of cone-beam CT (CBCT). The purposes of this study were to evaluate the reliability of cephalometric measurements of lateral cephalograms generated from a CBCT image by making comparisons with the traditional digital lateral cephalogram, and to evaluate the possibility of the clinical application of CBCT generated cephalogram images. Methods: Twenty patients whose external auditory meatus could be identified in the CBCT image were selected, and both CBCT and digital cephalograms were taken. Differences between the measurements of both cephalograms were tested by paired t-test. Results: Among the 22 measurements used, only U1-FH, Mx6 to PTV, and maxillomandibular difference showed statistically significant differences between the CBCT generated cephalogram and the digital cephalogram. Conclusions: The results suggest that the CBCT generated cephalogram can be used for some cephalometric measurements not requiring porion, PTV, condylion as a landmark (SNA, SNB, U1 to SN, IMPA, interincisal angle, etc.).

The Validity of Head Posture Aligner in Posteroanterior Cephalometry (정모 두부 방사선 사진 촬영시 Head Posture Aligner의 유용성에 관한 연구)

  • Kim, Eun-Hee;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.543-552
    • /
    • 2000
  • The purposes of this study were to evaluate the reproducibility of posteroanterior(PA) cephalograms obtained by two methods, the Head Posture Aligner(HPA) method in natural head posture and the conventional method(operator-guided method), and to compare the vertical rotational differences of the head Posture between lateral and PA cephalograms according to the method. The sample was consisted of 30 adults. At first day, a PA cephalogram and a lateral cephalogram were obtained from each subject by two methods to investigate the difference of vertical rotational posture between lateral and PA cephalograms. Two weeks later, another PA cephalogram was obtained using each method to evaluate the reproducibility of head posture. Five height measurements and nine width measurements were used in the paired t-test to compare the reproducibility of the PA cephalometric measurements between two methods. The differences of vertical rotational posture between lateral and PA cephalograms were calculated from a computer program and compared according to the method used, and following results were obtained. 1. Height measurements obtained by operator-guided method showed significant differences according to the time interval and revealed low reproducibility. 2. Height measurements obtained by HPA method did not show significant differences according to the time interval and presented high reproducibility. 3. In the comparison of width measurement, two methods did not show distinct differences in reproducibility. 4. The difference of vertical rotational posture between lateral and PA cephalograms showed $0.8^{\circ}$ in the HPA method, more less than $2.5^{\circ}$ in the operator-guided method. The results of the present study suggest that the HPA may be helpful in the PA cephalometric radiography in terms of reproducibility.

  • PDF

Comparison of analysis of the lateral cephalogram and analysis of lateral facial photograph (측모 두부방사선계측사진 분석과 측모 사진 분석의 비교)

  • Lim, Sung-Hoon;Cho, Ju-Young;Choi, Gab-Lim;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.36 no.1 s.114
    • /
    • pp.74-83
    • /
    • 2006
  • Analysis of lateral cephalometric radiograph (cephalogram) has been used routinely to evaluate skeletal and dental relationships, but analysis of the lateral facial photograph has not been used frequently for evaluation of skeletal relationships. As concerns about harm of X-ray irradiation increases, this study was planned to evaluate the possibility of substituting analysis of the lateral cephalogram with analysis of the lateral facial photograph by comparing these two analyses. According to the ANB values from cephalometric analysis, subjects were divided into three groups: Class I malocclusion group (n=32). Class II malocclusion group (n=32), and Class III malocclusion group (n=31). After measurements of angles indicating horizontal and vertical relationships of the maxilla and mandible on the lateral cephalograms and photographs, differences between Class I, II and III groups were evaluated. To evaluate the similarity between two similar values in the cephalograms and photographs, t-test using standardized variable Z and correlation analysis were performed in the Class I malocclusion group. The results showed that 1) SnN'Pg' on the photograph can be used to evaluate the antero-posterior relationship of the maxilla and mandible (ANB), 2) N'-Sn/Sn-Pg' on the photograph can be used to evaluate facial convexity (NA/APg), 3) Sn-Tra-Me' on the photograph can be used as a measurement similar to FMA. In conclusion, partly substituting lateral cephalogram analysis with lateral facial photograph analysis was possible in the evaluation of the maxilla and mandible.

THREE DIMENSIONAL ANALYSIS OF MAXILLOFACIAL STRUCTURE BY FRONTAL AND LATERAL CEPHALOGRAM (두부 방사선 규격사진을 이용한 악안면 구조의 3차원적 분석법)

  • Kwon, Kui-Young;Lee, Sang-Han;Kwon, Tae-Geon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.174-188
    • /
    • 1999
  • The purpose of this study is to evaluate the precision and accuracy of a three dimensional cephalogram constructed by using the frontal and lateral cephalogram of twelve human dry skulls. After achieving the three dimensional image reconstruction program, we tried to apply this program to two dentofacial deformity patients. 1. Conventional nasion relator in cephalostat was used to reproduce the same head position for the same dry skull. The mean difference of the three dimensional cephalogram for the same dry skull was $0.34{\pm}0.33mm$. Closeness of repeated measures to each skull reveals the precision of this method for the three dimensional cephalogram. 2. Concerning the accuracy, the mean difference between the three dimensional reconstruction data and actual lineal measurements was $1.47{\pm}1.45mm$ and the mean magnification ratio was $100.24{\pm}4.68%$. This Diffrerence is attributed mainly to the ill defined cephalometric landmarks, not to the positional change of the dry skull. 3. Cephalometric measurement of lateral and frontal radiographs had no consecutive magnification ratio because of the different focus-object distance. The mean difference between the frontal and lateral cephalogram to the actual lineal measurements was $4.72{\pm}2.01mm$ and $-5.22{\pm}3.36mm$. Vertical measurements were slightly more accurate than horizontal measurements. 4. Applying to the actual patient analysis, it is recommendable to use this program for analyzing the asymmetry or spatial change after operation. The orthodontic bracket would be a favorable cephalometric landmark for constructing the three dimensional images.

  • PDF

The comparative study of three-dimensional cephalograms to actual models and conventional lateral cephalograms in linear and angular measurements (3차원 두부방사선규격사진의 정확성에 관한 연구 -실제 계측 및 측모 두부방사선 규격사진 계측과의 비교-)

  • BAE, Gi-Sun;Park, Soo-Byung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.27 no.1
    • /
    • pp.129-140
    • /
    • 1997
  • Conventional cephalometrics have inherent errors because their evaluation is performed in two-dimension for threedimensional object. To compensate these errors, three-dimensional cephalograms - derivation of three-dimensional data from conventional lateral and postero-anterior cephalograms - were developed. In this study, the accuracy and precision of three dimensional cephalograms were determined by means of 10 linear and 12 angular measurements on 36 acrylic skull models and by the comparison of conventional lateral cephalograms. The results were as follows 1. Mean difference between three-dimensional cephalograms and actual models in linear measurements was $0.94{\pm}0.62mm$ and mean rate of magnification of three-dimensional cephalograms was $100.31{\pm}0.91%$. There were no statistically significant differences between three-dimensional cephalograms and actual models in linear measurements(${\alpha}=0.1$). 2. Mean difference between conventional lateral cephalograms and actual models in linear measurements was $6.44{\pm}1.48mm$ and mean rate of magnification of lateral cephalograms was $106.99{\pm}1.45%$. There were statistically significant differences between lateral cephalograms and actual models in linear measurements(P<0.005). 3. Mean difference between three-dimensional cephalograms and actual models in angular measurements was $1.22{\pm}0.82^{\circ}$ and mean rate of magnification of three-dimensional cephalograms was $105.71{\pm}12.07%$. There were no statistically significant differences between three-dimensional cephalograms and actual models in angular measurements(${\alpha}=0.1$). 4. Mean difference between conventional lateral cephalograms and actual models in angular measurements was $1.70{\pm}0.94^{\circ}$ and mean rate of magnification of lateral cephalograms was $106.35{\pm}15.70%$. There were no statistically significant differences between lateral cephalograms and actual models in angular measurements(${\alpha}=0.1$). There were similarity between three-dimensional and lateral cephalograms in angular measurements.

  • PDF

Digital imaging of film-based cephalograms using a digital camera (디지털 카메라를 이용한 필름 두부방사선사진의 디지털 이미지 전환)

  • Wang, Sung-Jin;Kim, Kyung-Ho;Choy, Kwang-Chul
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.448-457
    • /
    • 2004
  • As computer Programs for cephalometric analysis were developed in diagnosis & treatment planning, digital imaging of film-based cephalograms came to be needed. When a digital camera is used, a problem encountered the image distortion produced according to the focal length, which causes errors in indentifying landmarks. In addition, changes in the image size and compression ratio will inevitably produce a low quality image, causing errors in identifying landmarks. Hence. we have found the focal length producing the least image distortion when digital imaging the film-based cephalograms and the minimal digital camera setting which helps to identify the correct landmarks using the COOLPIX4500 digital camera (Nikon, Japan). The results were as follows The image distortion was minimized at a focal length of 16.4mm (79.4mm when converted into a 35mm film camera) when digital imaging the film-based cephalograms. When wide imaging, with a focal length of under IS.4mm, barrel distortion was found and when tole imaging. with a focal length of over 15.4mm pincushion distortion was found. The minimal digital camera setting was $2272{\times}1704$ pixel at normal (1/8) compression from which we can identify the correct landmarks at the same level as tracing the film-based cephalograms manually. As a result. when digital imaging the film-based cephalograms, using a COOLPIX4500 digital camera (Nikon, Japan), the focal length should be 16.4mm the pixel image size over $2272{\times}1704$, and the compression ratio over normal (1/8).

A STUDY ON THE ERRORS UN THE CEPHALOMETRIC MEASUREMENTS (두부방사선사진의 계측오류에 관한 연구)

  • Na, Kwang-Cheon;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.75-83
    • /
    • 1998
  • This study was done to recognize the importance of errors in measurements of cephalometric radiograph and to find the anatomical structures those need special care to select as a reference points through the detection of the systematic errors and estimation of random errors. For this purose, 100 cephalometric radiographs were prepared by usual manner and 61 reference points, and 130 measurement variables were established. Measurement errors were detected and estimated by the comparison of the 25 randomly-selected samples for repeated measurements with the main sample. The following results were obtained : 1. In comparison of the repeated measurements, there were statistical significant differences in 24 variables which were 18.4% of 130 total variables. 2. The frequency of the difference in identification of the reference points between the repeated measurements was very high in the root apex of upper incisor(as), the most posterior wall of maxilla(tu), soft tissue nasion(n'), soft tissue frontal eminence(ft), and ad3 in airway. 3. After correction of reference points marking until the level of below 5% significance, the range of random errors were from 0.67 to 1.71 degree or mm. 4. The variable shown the largest random error was the interincisal angle(ILs-ILi). 5. Measurement errors were mainly caused by the lack of precision in anatomic definitions and obscure radiographic image. From the above results, the author could find the high possibility of errors in cephalometric measurements and from this point, we should include error analysis in all the studies concerning measurments. In is essential to have a concept of error analysis not only for the investigator but also for a reader of other articles.

  • PDF

A comparative study of guiding methods for natural head posture in cephalometrics (두부방사선규격사진 촬영 시 유도방법에 따른 자연두부자세의 차이 및 재현성에 관한 연구)

  • Song, Jin-Myoung;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.35 no.5 s.112
    • /
    • pp.341-350
    • /
    • 2005
  • The Purpose of this study was to compare the degree of vortical head rotation and to evaluate the reproducibility of natural Head posture (NHP) according to two guiding methods, the head posture aligner (HPA) method and the solf balance posture (SBP) method. The subjects consisted of 30 adults. On the first day. lateral and frontal cephalometric radiographs were obtained through the two guiding methods. One mouth later. lateral and frontal cephalometric radiographs were obtained again through both guiding methods. The degrees of vertical head rotation of both guiding methods were compared and the reproducibility was evaluated for each guiding method. A comparison of the degrees of vortical head rotation for the two methods revealed that the vertical head posture was lower in the SBP method than in the HPA method by an average of $2.79^{\circ}$. All measurements obtained using the HPA and SBP methods with a time interval of one north did not show any significant difierence in lateral and frortal cephalometric radiographs. The results of the present study suggest that the SBP method may be used as an alternative to the HPA method in case the HPA method can not be applied.

Comparative Analysis of Accuracy between Computerized Tomography and Cephalogram for 3-Dimensional Measurement of Maxillofacial Structure (악안면 3차원 계측시 컴퓨터 단층촬영과 두부 방사선 규격사진의 정확성 비교 분석)

  • Paek, Jong-Su;Song, Jae-Chul;Lee, Hee-Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.123-137
    • /
    • 2001
  • Background: The purpose of this study is to evaluate the accuracy of measurements obtained from 3-dimensional computerized tomography and 3-dimensional cephalogram constructed by using the frontal and lateral cephalogram of six human dry skulls. Materials and Methods: After CT scans and each cephalograms were taken, 3-dimensional coordinates (X, Y, Z) of landmarks were obtained using computer programs. In this study, the accuracy of both methods were determined by means of 14 linear measurements compare with caliper measurements. Results: The standard deviation of landmarks of 3-dimensional CT and 3-dimensional cephalogram were 0.23 mm, and 0.30 mm in X axis, 0.27 mm and 0.25 mm in Y axis, and 0.27 mm and 0.31 mm in Z axis. In both methods, the standard deviation were less than 0.5 mm in all landmarks, and the most of landmarks showed less than 1 mm in range. Concerning the accuracy, the mean difference between 3-dimensional CT and manual measurements was 0.33 mm, and 1.13 mm between 3-dimensional cephalogram and manual measurements. The distance between RGo and LGo showed the largest difference (2.03 mm). There were highly significant, and large correlation with manual measurements in both methods (p<0.01). Conclusion: It is concluded that closeness of repeated measures to each skulls reveal the precision of both methods. Computerized tomography and cephalogram for 3-dimensional measurement of maxillofacial structure are equivalent in quality to caliper measurements.

  • PDF