• 제목/요약/키워드: 두뇌 활성

Search Result 31, Processing Time 0.024 seconds

Statistical Analysis of Brain Activity by Musical Stimulation (음악적 자극에 의한 뇌 활성도의 통계적 해석)

  • Jung, Yu-Ra;Jang, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2021
  • In this paper, we presented the results of analysis with data obtained through EEG measurements to confirm the effect of musical stimulus when performing mathematical tasks. While the subject was solving a mathematical task, favorite and unfavorite music classified according to the subject's preference were presented as musical stimulus and the tasks were divided into memorization task and procedure task. The data measured in the EEG experiments was divided into theta waves, SMR waves and mid-beta waves which are the frequency bands related to concentration to compare the relative power spectrum values. In our results, in the case of comparing no music with favorite music and no music with unfavorite music, a significant difference was observed in the several channels, and the average difference was shown in the channels F3 and F4 of the frontal lobe. In that channels, the power was found to be greater when the music was presented than the case where there was no music. Depending on the subject's preference, it was confirmed that favorite music showed greater brain activity than unfavorite music.

Development of Neuropsychological Model for Spatial Ability and Application to Light & Shadow Problem Solving Process (공간능력에 대한 신경과학적 모델 개발 및 빛과 그림자 문제 해결 과정에의 적용)

  • Shin, Jung-Yun;Yang, Il-Ho;Park, Sang-woo
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.5
    • /
    • pp.371-390
    • /
    • 2021
  • The purpose of this study is to develop a neuropsychological model for the spatial ability factor and to divide the brain active area involved in the light & shadow problem solving process into the domain-general ability and the domain-specific ability based on the neuropsychological model. Twenty-four male college students participated in the study to measure the synchronized eye movement and electroencephalograms (EEG) while they performed the spatial ability test and the light & shadow tasks. Neuropsychological model for the spatial ability factor and light & shadow problem solving process was developed by integrating the measurements of the participants' eye movements, brain activity areas, and the interview findings regarding their thoughts and strategies. The results of this study are as follows; first, the spatial visualization and mental rotation factors mainly required activation of the parietal lobe, and the spatial orientation factor required activation of the frontal lobe. Second, in the light & shadow problem solving process, participants use both their spatial ability as a domain-general thought, and the application of scientific principles as a domain-specific thought. The brain activity patterns resulting from a participants' inferring the shadow by parallel light source and inferring the shadow when the direction of the light changed were similar to the neuropsychological model for the spatial visualization factor. The brain activity pattern from inferring an object from its shadow by light from multiple directions was similar to the neuropsychological model for the spatial orientation factor. The brain activity pattern from inferring a shadow with a point source of light was similar to the neuropsychological model for the spatial visualization factor. In addition, when solving the light & shadow tasks, the brain's middle temporal gyrus, precentral gyrus, inferior frontal gyrus, middle frontal gyrus were additionally activated, which are responsible for deductive reasoning, working memory, and planning for action.

Antioxidant Activities from Crocus sativus in China (중국(中國) 장홍화(藏紅花)(Crocus sativus)추출액(抽出液)의 항산화(抗酸化) 활성효과(活性效果))

  • Yang, Chao;Song, Won-Seob
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.131-131
    • /
    • 2018
  • 중국(中國) 장홍화(藏紅花)는 해발 1500m~3000m에 자생하는 고원식물이다. 장홍화는 여성질환예방과 두뇌의 신경안정, 호르몬분비 촉진, 학습증진과 기억력향상에 의한 알츠하이머 치료의 효과가 있는 것으로 알려져 있으며, 함유되어 있는 크로신은 암세포를 파괴시키어 종양세포를 줄이는 작용을 하며, 카로티노이드 성분이 항산화 활성과 면역을 증진시키어 항암효과를 가져다 준다. 또한 다량의 칼륨을 함유하고 있어서 나트륨배출에 효과적이어서 혈압을 떨어뜨리는 작용을 한다. 또한 신경전달물질의 활동을 증진시키어서 스트레스 해소와 치매 및 인지력을 높여준다고도 알려져 있다. 본 실험에서는 장홍화(藏紅花)추출액의 총 폴리페놀 함량과 항산화 물질 활성을 조사했던 바, 장홍화(藏紅花) 메탄올과 에탄올추출액에서 항산화 반응이 매우 양호하였다. 또한 총 폴리페놀 함량도 에탄올 추출물과 메탄올 추출물 처리구에서도 비슷한 결과를 나타내었다. 이러한 결과들로 미루어 볼 때 장홍화(藏紅花)의 추출액은 건강음료와 화장품의 기능성원료로도 이용이 가능할 것으로 추측되었다.

  • PDF

Brain Activation in Generating Hypothesis about Biological Phenomena and the Processing of Mental Arithmetic: An fMRI Study (생명 현상에 대한 과학적 가설 생성과 수리 연산에서 나타나는 두뇌 활성: fMRI 연구)

  • Kwon, Yong-Ju;Shin, Dong-Hoon;Lee, Jun-Ki;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.1
    • /
    • pp.93-104
    • /
    • 2007
  • The purpose of this study is to investigate brain activity both during the processing of a scientific hypothesis about biological phenomena and mental arithmetic using 3.0T fMRI at the KAIST. For this study, 16 healthy male subjects participated voluntarily. Each subject's functional brain images by performing a scientific hypothesis task and a mental arithmetic task for 684 seconds were measured. After the fMRI measuring, verbal reports were collected to ensure the reliability of brain image data. This data, which were found to be adequate based on the results of analyzing verbal reports, were all included in the statistical analysis. When the data were statistically analyzed using SPM2 software, the scientific hypothesis generating process was found to have independent brain network different from the mental arithmetic process. In the scientific hypothesis process, we can infer that there is the process of encoding semantic derived from the fusiform gyrus through question-situation analysis in the pre-frontal lobe. In the mental arithmetic process, the area combining pre-frontal and parietal lobes plays an important role, and the parietal lobe is considered to be involved in skillfulness. In addition, the scientific hypothesis process was found to be accompanied by scientific emotion. These results enabled the examination of the scientific hypothesis process from the cognitive neuroscience perspective, and may be used as basic materials for developing a learning program for scientific hypothesis generation. In addition, this program can be proposed as a model of scientific brain-based learning.

Changes of the Prefrontal EEG(Electroencephalogram) Activities according to the Repetition of Audio-Visual Learning (시청각 학습의 반복 수행에 따른 전두부의 뇌파 활성도 변화)

  • Kim, Yong-Jin;Chang, Nam-Kee
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.3
    • /
    • pp.516-528
    • /
    • 2001
  • In the educational study, the measure of EEG(brain waves) can be useful method to study the functioning state of brain during learning behaviour. This study investigated the changes of neuronal response according to four times repetition of audio-visual learning. EEG data at the prefrontal$(Fp_{1},Fp_{2})$ were obtained from twenty subjects at the 8th grade, and analysed quantitatively using FFT(fast Fourier transform) program. The results were as follows: 1) In the first audio-visual learning, the activities of $\beta_{2}(20-30Hz)$ and $\beta_{1}(14-19Hz)$ waves increased highly, but the activities of $\theta(4-7Hz)$ and $\alpha$ (8-13Hz) waves decreased compared with the base lines. 2). According to the repetitive audio-visual learning, the activities of $\beta_{2}$ and $\beta_{1}$ waves decreased gradually after the 1st repetitive learning. And, the activity of $\beta_{2}$ wave had the higher change than that of $\beta_{1}$ wave. 3). The activity of $\alpha$ wave decreased smoothly according to the repetitive audio-visual learning, and the activity of $\theta$ wave decreased radically after twice repetitive learning. 4). $\beta$ and $\theta$ waves together showed high activities in the 2nd audio-visual learning(once repetition), and the learning achievement increased highly after the 2nd learning. 5). The right prefrontal$(Fp_{2})$ showed higher activation than the left$(Fp_{1})$ in the first audio-visual learning. However, there were not significant differences between the right and the left prefrontal EEG activities in the repetitive audio-visual learning. Based on these findings, we can conclude that the habituation of neuronal response shows up in the repetitive audio-visual learning and brain hemisphericity can be changed by learning experiences. In addition, it is suggested once repetition of audio-visual learning be effective on the improvement of the learning achievement and on the activation of the brain function.

  • PDF

Association between Cerebral Blood Flow and Cognitive Improvement Effect by B. mori Extracted Component (가잠 가수분해물에 의한 학습력 개선 및 두뇌의 혈류변화와 글루코스 사용정도의 긍정적 변화)

  • Lee, Sang-Hyung;Kim, Yong-Sik;Kim, Sung-Su;Kang, Yong-Koo;Lee, Moo-Yeol;Lee, Kwang-Gill;Yeo, Joo-Hong;Lee, Won-Bok;Kim, Dae-Kyong
    • Journal of Sericultural and Entomological Science
    • /
    • v.46 no.2
    • /
    • pp.77-79
    • /
    • 2004
  • To investigate whether BF-7, extracted from Bombyx mori, improved learning and memory of ordinary people, K-WAIS (Korean version of Wechsler adult intelligence scale) was performed in 4 normal students. Treatment with 400 mg of BF-7 increased mean IQ from 103 to 114. To know how BF-7 plays such a positive role, we measured the blood flow to brain, especially for the area concerned with learning and memory, with Single Photon Emission Computed Tomography(SPECT). Our result showed that the blood flow to parahippocampal gyrus and medial temporal area was increased. Also, our results showed the image representing the increase of blood supply in this area. So, our results suggest that BF-7 effectively help to use brain concerning with learning and memory.

Learning-associated Reward and Penalty in Feedback Learning: an fMRI activation study (학습피드백으로서 보상과 처벌 관련 두뇌 활성화 연구)

  • Kim, Jinhee;Kan, Eunjoo
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.1
    • /
    • pp.65-90
    • /
    • 2017
  • Rewards or penalties become informative only when contingent on an immediately preceding response. Our goal was to determine if the brain responds differently to motivational events depending on whether they provide feedback with the contingencies effective for learning. Event-related fMRI data were obtained from 22 volunteers performing a visuomotor categorical task. In learning-condition trials, participants learned by trial and error to make left or right responses to letter cues (16 consonants). Monetary rewards (+500) or penalties (-500) were given as feedback (learning feedback). In random-condition trials, cues (4 vowels) appeared right or left of the display center, and participants were instructed to respond with the appropriate hand. However, rewards or penalties (random feedback) were given randomly (50/50%) regardless of the correctness of response. Feedback-associated BOLD responses were analyzed with ANOVA [trial type (learning vs. random) x feedback type (reward vs. penalty)] using SPM8 (voxel-wise FWE p < .001). The right caudate nucleus and right cerebellum showed activation, whereas the left parahippocampus and other regions as the default mode network showed deactivation, both greater for learning trials than random trials. Activations associated with reward feedback did not differ between the two trial types for any brain region. For penalty, both learning-penalty and random-penalty enhanced activity in the left insular cortex, but not the right. The left insula, however, as well as the left dorsolateral prefrontal cortex and dorsomedial prefrontal cortex/dorsal anterior cingulate cortex, showed much greater responses for learning-penalty than for random-penalty. These findings suggest that learning-penalty plays a critical role in learning, unlike rewards or random-penalty, probably not only due to its evoking of aversive emotional responses, but also because of error-detection processing, either of which might lead to changes in planning or strategy.

Principle and Recent Advances of Neuroactivation Study (신경 활성화 연구의 원리와 최근 동향)

  • Kang, Eun-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.172-180
    • /
    • 2007
  • Among the nuclear medicine imaging methods available today, $H_2^{15}O-PET$ is most widely used by cognitive neuroscientists to examine regional brain function via the measurement of regional cerebral blood flow (rCBF). The short half-life of the radioactively labeled probe, $^{15}O$, often allows repeated measures from the same subjects in many different task conditions. $H_2^{15}O-$ PET, however, has technical limitations relative to other methods of functional neuroimaging, e.g., fMRI, including relatively poor time and spatial resolutions, and, frequently, insufficient statistical power for analysis of individual subjects. However, recent technical developments, such as the 3-D acquisition method provide relatively good image quality with a smaller radioactive dosage, which in turn results in more PET scans from each individual, thus providing sufficient statistical power for the analysis of individual subject's data. Furthermore, the noise free scanner environment $H_2^{15}O$ PET, along with discrete acquisition of data for each task condition, are important advantages of PET over other functional imaging methods regarding studying state-dependent changes in brain activity. This review presents both the limitations and advantages of $^{15}O-PET$, and outlines the design of efficient PET protocols, using examples of recent PET studies both in the normal healthy population, and in the clinical population.

Age-Specific Brain Activation in Secondary School Students' Self-Regulating Activities on Biological Tasks -fNIRS Study (생물 과제의 자기조절 활동에서 나타나는 중등학생의 연령별 두뇌 활성 -fNIRS 연구)

  • Lee, Seo-Ri;Kwon, Yong-Ju
    • Journal of Science Education
    • /
    • v.46 no.1
    • /
    • pp.30-39
    • /
    • 2022
  • The purpose of this study is to compare and analyze secondary school student's brain activity on assimilation, conflict, and accommodation processes of self-regulation. The self-regulation task was presented a biological phylogenetic task, and the brain activity was measured and analyzed with fNIRS. As a result, a significant activation was found in the left DLPFC, OFC, and FP regions in the conflict process compared to the assimilation process, and a significant activation was found in DLPFC and VLPFC in the accommodation process. As the age increase, the DLPFC also increases in the conflict process and VLPFC increases in the assimilation process. In addition, comparing conflict and accommodation process, the 7th grade students show a significant brain activity in the right VLPFC, the 9th grade students show significant brain activity in the left FP and DLPFC areas in the accommodation process. However, the 11th grade students did not show any significant brain activity at this process. These results presumably show that the neurological research method could be applied to educational research in cognitive activity and classroom instructional situation.

A Study on the Prefrontal EEG Activities in the case of Audio-Visual Learning using Wavelet Transform (Wavelet Transform을 이용한 시청각 학습시의 전두부 뇌파 활성도에 관한 연구)

  • Jung, So-Ra;Ji, Seok-Jun;Lee, O-Girl;Kwak, Ryue-Hye;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2177-2178
    • /
    • 2006
  • 학습 행동에서의 뇌파 측정은 실시간으로 두뇌 기능 상태를 연구하는데 유용한 연구 방법이며 대뇌의 부위 중 전두엽은 새로움에 대한 지향 반응과 사고 활동에 중요한 역할을 한다. 본 연구에서는 중학교 2학년 학생에게 새로운 시청각 학습 자료를 제시하고 5회의 반복학습이 이루어지는 과정에서의 전두부($Fp_2,Fp_2$)의 뇌파를 측정하고 Fourier, Wavelet 변환을 하여 정량적으로 분석하였다. 주의 집중, 정서 등 인지와 관련지어 특정파의 조절 능력 및 파의 특성을 이용한 여러 연구들을 종합해보면, 기억력, 주의지속과 연관되어 알파파, 베타파와 세타파가 발생되는 것을 볼 수 있다. 이 중 알파파는 기존의 뇌 상태를 동기화시키고 주의나 기억의 과정에 영향을 미칠 수 있는 것으로 증명되었다. 본 논문에서는 신호 처리에 높은 효율을 보이는 Wavelet 변환을 이용하여, 학습이 됨에 따라 변화하는 EEG 신호 가운데 알파파의 패턴과 활성도를 분석하고자 한다.

  • PDF