• Title/Summary/Keyword: 동해중층수

Search Result 32, Processing Time 0.021 seconds

Distribution of the East Sea Intermediate Water in November 1994 (1994년 11월 동해 중층수의 분포)

  • CHOI Yong-Kyu;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.119-127
    • /
    • 1997
  • In order to investigate the distribution of the last Sea Intermediate Water (ESIW), CTD measurement was peformed in the last Sea of Korea during $8\~11$ November, 1994. ESIW was $2.0\~2.3^{\circ}C$ in potential temperature, $34.04\~34.06\%_{\circ}$ in salinity and $5.6\~6.1\;ml/l$ in of gen content on the isopycnic surface of 27.2 in potential density. The isopycnic surface of 27.2 which represented the layer of ESIW became shallower from about 200 m depth in the open sea to about 140 m depth near the coast. off the coast of Jukbyun, the 27.2 isopycnic surface was located at the depth of about 120 m and had a little higher potential temperature and salinity, lower oxygen content than those in the open sea. The ESIW on the continental shelf was higher about 0.8 ml/l in AOU, 0.02 in salinity than those of the ESIW in the open sea. These suggest that the ESIW on the continental shelf did not come from the North Korean Cold Water but originated from the open sea.

  • PDF

Chemical Characteristics of the East sea Intermediate Water in the Ulleung Basin (울릉분지 해역 동해 중층수의 화학적 특성)

  • 김경렬;이태식
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.278-290
    • /
    • 1991
  • A synoptic survey of chemical properties was carried out at 21 stations in the Ulleung Basin in May 1988 on board T/V HANBADA. Vertical structures of typical profiles are: surface mixedlayer waters in the upper 30∼40 m with depleted nutrients concentrations, thermocline waters with rapid variations in all physical and chemical properties. and deep Waters below 200 m which are nearly homogeneous. Along the northern section at 37$^{\circ}$12'N. The salinity minimum layer was observed at about 190m. which characterize the East Sea Intermediate Water (ESIW). The dissolved oxygen concentration in this layer was about 230∼ 275uM, lower than 290uM (6.5ml/l) which is the previously known characteristics of the ESIW. However, apparent oxygen utilization (AOU), nitrate, phosphate and silicate show systematically low concentration in the salinity-minimum layer. The low values of AOU and all the nutrients associated with the salinity-minimum, may be useful to identify the ESIW and serve as a new tracer in the East Sea.

  • PDF

Spatial and Temporal Variation of Dissolved Inorganic Radiocarbon in the East Sea (동해 용존무기탄소 중 방사성탄소의 분지별 비교 및 시간에 따른 변화)

  • Sim, Bo-Ram;Kang, Dong-Jin;Park, Young Gyu;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • This study examined the spatial and temporal variation of dissolved inorganic radiocarbon in the East Sea. Five vertical profiles of radiocarbon values were obtained from samples collected in 1999 in three basins (Japan Basin, Ulleung Basin, Yamato Basin) of the East Sea. Radiocarbon values decreased from 63- 85‰ at the surface to about -50‰ with increasing depth (up to 2,000 m) and were nearly constant in the layer deeper than 2,000 m in all basins. Radiocarbon values did not show significant basin-to-basin differences in the surface and the bottom layers. In the intermediate layer (200-2,000 m), however, they decreased in the order of Japan Basin > Ulleung Basin > Yamato Basin, which is consistent with the suggested circulation pattern in the intermediate layer of the East Sea. Radiocarbon was found to have decreased at ~2%/year in the surface water of the East Sea. In contrast, in the interior of the East Sea, radiocarbon values have increased with time in all three basins. In the Central Water, the annual increase rate was about 3.3‰, which is faster than the rates in the Deep and Bottom Waters. The radiocarbon in the Deep and Bottom Waters had increased until mid-1990s, after which time it has been almost constant.

Temperature Variation in the Ulleung Warm Eddy during 2013~2015 (2013~2015년 울릉 난수성 소용돌이의 수온변동)

  • Choi, Yong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.205-211
    • /
    • 2016
  • Based on the Expendable Bathythermograph (XBT) observation and serial oceanographic observation of National Institute of Fisheries Science (NIFS) during July 2013 to July 2015, we examined the temperature variation in the Ulleung Warm Eddy (UWE) in the East Sea. The UWE was always shown during the observation periods even though it was not the whole shape. The coefficient of variation (CV) was largest in the depth of 250 m at the side of the east coast of Korean Peninsula with $3{\sim}4^{\circ}C$ in temperature. CV of the horizontal distribution at 250 m depth was also largest in the region biased along the east coast of Korea. The warm eddy moved not only to the east-west direction but also to the north-south direction in the viewpoint of horizontal distributions of temperature. This region between the Korean Peninsula and Ulleung island also is the passage of the East Korean Warm Current. This means that interaction between the East Korean Warm Current and periphery of warm eddy makes large in the variation of movement along the east coast of Korean Peninsula. The largest variation of temperature at 250 m depth seemed to be significantly correlated with the East Sea Intermediate Water (ESIW) underlying Ulleung Warm Eddy. It is suggested that the interaction between the ESIW and UWE is active in the mid-depth along the periphery of UWE.

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea 1. Relationships between Water Mass and Nutrient Distribution Pattern in Autumn (동해 극전선역의 영양염류 순환과정 1. 추계 수괴와 영양염 분포와의 관계)

  • Moon Chang-Ho;YANG Han-Soeb;LEE Kwang Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.503-526
    • /
    • 1996
  • A synoptic survery of chemical characteristics in the last Sea of Korea was carried out at the 11 stations near Ullungdo in November, 1994 on board R/V Tam-Yang. On the basis of the vortical distribution patterns of temperature, salinity and dissolved oxygen, water masses in the study area are divided into five groups; 1) Tsushima Surface Water (TSW), 2) Tsushima Middle Water (TMW), 3) East Sea Intermediate Water (ESIW), 4) last Sea Proper Water (ESPW), 5) Mixed Water (MW). In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly near the thermocline. There was a slight decrease in the ESIW and the concentrations were constant with the depth below 300m except dissolved silicate which still increased with depth. Relatively high value of Si/P ratio (25.2) in ESPW, whick is the oldest water mass, suggests that Si is regenerating more slowly compared to other nutrients. The relatively high value of N/P ratio (18.6) in the surface layer might be related to high vertical eddy diffusivity $(K_z)$ of $1.19\;cm^{2}/sec$ and high nitrate upward flux of $103.7\;{\mu}g-at/m^{2}/hr$, compared to the values reported in other areas. Apparent Oxygen Utilization (AOU) was very low in the surface layer and increased in the TMW, but there was a slight decrease in the ESIW. The highest value of AOU occurred in the ESPW. The slpoe of P/AOU was 0.50. The study on the relationship between water masses and nutrient distribution patterns is important in understanding the regeneration processes of nutrients in the polar region of the last Sea.

  • PDF

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -III. Chemical Characteristics of Water Masses in the Polar Front Area of the Central Korean East Sea- (한반도 근해의 해류와 해수특성 -III. 한국 동해 중부 극전선역에 출현하는 수괴의 화학적 특성-)

  • YANG Han-Soeb;KIM Seong-Soo;KANG Chang-Geun;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.3
    • /
    • pp.185-192
    • /
    • 1991
  • The vertical distribution and chemical characteristics of water masses were measured along two south-north transects in the polar front region of the central Korean East Sea. In February, a thermocline was present at depth between 50m and loom at the southern sites of a landward A-transect, and its depth was gradually deepened northward. At an outside B-transect, a thermocline was observed at significantly deep depth of 300m to 400m at two northern stations(Stn. 10 and 11), though the depth of the southward stations was nearly identical to that at the northward stations on a A-transect. In September, there were vertically more various water masses, i.e. the Tsushima Warm surface water(TWSW) or more than $20^{\circ}C$, the Tsushima Middle water(TMW) with a range of $12{\~}17^{\circ}C$, the North Korea Cold Water(NKCW) with $1{\~}7^{\circ}C$ temperature, the Japan Sea Proper Water(JSPW) of less than $1^{\circ}C$, and the mixed water. The North Korea Cold Water could be distinguishable from the other waters, especially from the mixed water of the Tsushima Middle Water and the Japan Sea Proper Water by the pattern of $T-O_2$ diagram. For instance, the North Korea Cold Water had higher oxygen by $1{\~}2ml/l$ than those in the mixed water, although both the two water masses ranged $1{\~}7^{\circ}C$ in water temperature. AOU value was the highest in the JSPW and the lowest in the TWSW. Also, AOU indicated a nearly linear and negative correlation with water temperature. However, AOU data for two masses, the NKCW and the TMW, in September departed remarkably from a regression line. Moreover, the ratio of $$\Delta P/\Delta AOU)$ in September was about $0.45{\mu}g-at/ml$ and higher than the value observed in the open sea. This high value could be elucidated by two factors; intrusion of the NKCW with high oxygen and molecular diffusion of dissolved oxygen from the surface into the lower layer. AOU would be a useful tracer for water masses in the polar front area of the Korean East Sea.

  • PDF

Characteristics of Physical Properties in the Ulleung Basin (울릉분지 내의 물리적 특성)

  • Kim, Kuh;Kim, Kyung-Ryul;Chung, Jong-Yul;Yoo, Hong-Sun;Park, Sang-Gap
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.83-100
    • /
    • 1991
  • A layer of salinity-minimum which characterizes the East Sea intermediate Water (ESIW) is found at an approximate depth of 200 m in three CTD section taken in the Ulleung Basin on May 17-21, 1988. Properties at this layer vary in ranges of $1.1^{\circ}C except at stations near the east coast of Korea where temperature is as high as $4.39^{\circ}C$ and salinity is as low as $33.992{\textperthousand}$. To be distinguished from the ESIW the East Sea Proper Water (ESPW) may be characterized by temperature less than $1^{\circ}C$, Salinity at the saliently-minimum layer and 500db increases southward in general, implying that the cold waters, both ESIW and ESPW, formed in the northern basin of the East Sea are spreading southward below the permanent thermocline in the basin. Hydrography in the Ulleung Basin is very similar to that in the Alboran Sea, suggesting a possibility of an anticyclonic circulation in the Ulleung Basin which is controlled strongly by the shoaling bottom.

  • PDF

Structure of the Temperature and Salinity in 2003-2005 Profiled by the ARGO floats around the Ulleung-do area in the East Sea (ARGO 뜰개에 의한 2003-2005년 울릉도 주변 해역의 수온-염분 구조)

  • Kim, Eung;Ro, Young-Jae;Youn, Yong-Hun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • This study investigated the temperature-salinity spatio-temporal variability around the Ulleung-do Island (UI) by using CTD profiles obtained by the ARGO floats far the period of Oct.,2003 to Aug.,2005. The waterbody in the upper 700 m around the UI could be classified into five water masses, which is consistent to traditional water characteristics in the East Sea. In the upper surface layer, the temperature and salinity in fall season became even lower than those properties in the summer time. The East Sea Intermediate Water (ESIW) characterized by the salinity minimum layer shows the range of potential temperature between 1 to $5^{\circ}C$ and salinity lower than 34.06 psu. The ESIW lies approximately at 265 m depth with average thickness of 175 m. This thickness of the ESIW continues to be relatively uniform regardless of spatio-temporal space. However, the depth of the ESIW shows vertical variation influenced by the Ulleung warm eddy (UWE). Since the UWE lies in the upper layer, the Upper Portion of the Japan Sea Proper. Water (UPJSPW) is also affected to show the vertical variation. The influence extorted by the UWE reached down to 700 m depth in terms of temperature. The CTD profiles obtained with the high sampling rate by ARCO floats over two-year period provided with very useful and detailed informations in investigating the spatio-temporal variability In the study area.

A multilayer Model for Dynamics of Upper and Intermediate Layer Circulation of the East Sea (동해의 상, 중층 순환 역학에 대한 다층모델)

  • 승영호;김국진
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.227-236
    • /
    • 1995
  • A simple layer model based on isophcnal coordinate is applied to the East Sea to examine the dynamics of circulation. The results confirm the existing knowledge about role of inflow-outflow and wind in driving the circulation. It is found, however, that the buoyancy flux generates quite different circulation pattern; it enhances the inflow-outflow driven circulation and has a convective nature. The circulation considering all these effects resembles the schematic one presently known. In the circulation, the intermediate layer is outcropped in the north off the northern boundary, ventilated here and flows cyclonically in the northern part of basin. This water, however, does not flow southward directly because of the strong eastward (separating from the coast) current in the layer above. This water also loses its potential vorticity while traveling around the periphery of the outcropping region and is thus characterized by minimum potential vorticity in the interior of the basin.

  • PDF

Summer Hydrographic Features of the East Sea Analyzed by the Optimum Multiparameter Method (OMP 방법으로 분석한 하계 동해의 수계 특성)

  • Kim, Il-Nam;Lee, Tong-Sup
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.581-594
    • /
    • 2004
  • CREAHS II carried out an intensive hydrographic survey covering almost entire East Sea in 1999. Hydrographic data from total 203 stations were released to public on the internee. This paper summarized the results of water mass analysis by OHP (Optimum Multiparameter) method that utilizes temperature, salinity, dissolved oxygen, pH, alkalinity, silicate, nitrate, phosphate and location data as an input data-matrix. A total of eight source water types are identified in the East Sea: four in surface waters(North Korea Surface Water, Tatar Surface Cold Water, East Korean Coastal Water, Modified Tsushima Surface Water), two intermediate water types (Tsushima Middle Water, Liman Cold Water), two deep water types (East Sea Intermediate Water, East Sea Proper Water). Of these NKSW, MTSW and TSCW are the newly reported as the source water type. Distribution of each water types reveals several few interesting hydrographic features. A few noteworthy are summarized as follows: The Tsushima Warm Current enter the East Sea as three branches; East Korea Coastal Water propagates north along the coast around $38^{\circ}N$ then turns to northeastward to $42^{\circ}N$ and moves eastward. Cold waters of northern origin move southward along the coast at the subsurface, which existence the existence of a circulation cell at the intermediate depth of the East Sea. The estimated volume of each water types inferred from the OMP results show that the deep waters (ESIW + ESPW) fill up ca. 90% of the East Sea basins. Consequently the formation and circulation of deep waters are the key factors controlling environmental condition of the East Sea.