• Title/Summary/Keyword: 동적 타임 워핑(DTW)

Search Result 7, Processing Time 0.025 seconds

Efficient Handwritten Character Verification Using an Improved Dynamic Time Warping Algorithm (개선된 동적 타임 워핑 알고리즘을 이용한 효율적인 필기문자 감정)

  • Jang, Seok-Woo;Park, Young-Jae;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.19-26
    • /
    • 2010
  • In this paper, we suggest a efficient handwritten character verification method in on-line environments which automatically analyses two input character string and computes their similarity degrees. The proposed algorithm first applies the circular projection method to input handwritten strings and extracts their representative features including shape, directions, etc. It then calculates the similarity between two character strings by using an improved dynamic time warping (DTW) algorithm. We improved the conventional DTW algorithm efficiently through adopting the branch-and-bound policy to the existing DTW algorithm which is well-known to produce good results in the various optimization problems. The experimental results to verify the performance of the proposed system show that the suggested handwritten character verification method operates more efficiently than the existing DTW and DDTW algorithms in terms of the speed.

Range Subsequence Matching under Dynamic Time Warping (DTW 거리를 지원하는 범위 서브시퀀스 매칭)

  • Han, Wook-Shin;Lee, Jin-Soo;Moon, Yang-Sae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.559-566
    • /
    • 2008
  • In this paper, we propose a range subsequence matching under dynamic time warping (DTW) distance. We exploit Dual Match, which divides data sequences into disjoint windows and the query sequence into sliding windows. However, Dual Match is known to work under Euclidean distance. We argue that Euclidean distance is a fragile distance, and thus, DTW should be supported by Dual Match. For this purpose, we derive a new important theorem showing the correctness of our approach and provide a detailed algorithm using the theorem. Extensive experimental results show that our range subsequence matching performs much better than the sequential scan algorithm.

Effective Handwriting Verification through DTW and PCA (DTW와 PCA에 기반한 효과적인 필적 검증)

  • Jang, Seok-Woo;Huh, Moon-Haeng;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.25-32
    • /
    • 2009
  • In this paper, we propose a new handwriting verification method using pattern analysis in off-line environments. The proposed method first segments character regions in a document and extracts effective features from the segmented regions. It then estimates the similarity between the extracted non-linear features and reference ones by using dynamic time warping and principal component analysis. Our handwriting verification method extracts handwriting features effectively and enables the verification of handwriting with various lengths of features as well as ones of short patterns. The experimental results show that our method outperforms others in terms as accuracy. We expect that the proposed method will automate the manual handwriting verification tasks and provide much objectivity on handwriting identification.

Analyzing Growth Factors of Alley Markets Using Time-Series Clustering and Logistic Regression (시계열 군집분석과 로지스틱 회귀분석을 이용한 골목상권 성장요인 연구)

  • Kang, Hyun Mo;Lee, Sang-Kyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.535-543
    • /
    • 2019
  • Recently, growing social interest in alley markets, which have shown rapid growth like Gyeonglidan-gil street in Seoul, has led to the need for an analysis of growth factors. This paper aims at exploring growing alley markets through time-series clustering using DTW (Dynamic Time Warping) and examining the growth factors through logistic regression. According to cluster analysis, the number of growing markets of the Northeast, the Southwest, and the Southeast were much more than the Northwest but the proportion in region of the Northwest, the Northeast, and the Southwest were much more than the Southeast. Logistic regression results show that people in 20s and 30s have a lower impact on sales than those in 50s, but have a greater impact on growth of alley market. Alley markets located in high-income areas often reached their growth limits, indicating a tendency to stagnate or decline. The proximity of a subway station effected positive on sales but negative on growth. This research is an advanced study in that the causes of sales growth of alley markets is examined, which has not been examined in the preceding study.

Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method (바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Vocabulary recognition system is providing inaccurate vocabulary and similar phoneme recognition due to reduce recognition rate. It's require method of similar phoneme recognition unrecognized and efficient feature extraction process. Therefore in this paper propose phoneme likelihood error correction improvement system using based on phoneme feature Bhattacharyya distance measurement. Phoneme likelihood is monophone training data phoneme using HMM feature extraction method, similar phoneme is induced recognition able to accurate phoneme using Bhattacharyya distance measurement. They are effective recognition rate improvement. System performance comparison as a result of recognition improve represent 1.2%, 97.91% by Euclidean distance measurement and dynamic time warping(DTW) system.

Time series clustering for AMI data in household smart grid (스마트그리드 환경하의 가정용 AMI 자료를 위한 시계열 군집분석 연구)

  • Lee, Jin-Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.791-804
    • /
    • 2020
  • Residential electricity consumption can be predicted more accurately by utilizing the realtime household electricity consumption reference that can be collected by the AMI as the ICT developed under the smart grid circumstance. This paper studied the model that predicts residential power load using the ARIMA, TBATS, NNAR model based on the data of hour unit amount of household electricity consumption, and unlike forecasting the consumption of the whole households at once, it computed the anticipated amount of the electricity consumption by aggregating the predictive value of each established model of cluster that was collected by the households which show the similiar load profile. Especially, as the typical time series data, the electricity consumption data chose the clustering analysis method that is appropriate to the time series data. Therefore, Dynamic Time Warping and Periodogram based method is used in this paper. By the result, forecasting the residential elecrtricity consumption by clustering the similiar household showed better performance than forecasting at once and in summertime, NNAR model performed best, and in wintertime, it was TBATS model. Lastly, clustering method showed most improvements in forecasting capability when the DTW method that was manifested the difference between the patterns of each cluster was used.

Time Series Patterns and Clustering of Rotifer Community in Relation with Topographical Characteristics in Lentic Ecosystems (정수생태계의 지형적인 요인 변화와 윤충류 출현 종 수 및 개체군 밀도 변동에 대한 연구)

  • Oh, Hye-Ji;Heo, Yu-Ji;Chang, Kwang-Hyeon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.390-397
    • /
    • 2021
  • The time series data of rotifer community focusing on the species number and total density were collected from 29 reservoirs located at Jeonnam Province from 2008 to 2016 quarterly. The reservoirs had similar weather condition during the study period, but their sizes and water qualities were different. To analyze the temporal dynamics of rotifer community, the medians, ranges, outliers and coefficient of variation (CV) value of rotifer species number and abundance were compared. For the temporal trend analysis, time series of each reservoir data were compared and clustered using the dynamic time warping function of the R package "dtwclust". Small-sized reservoirs showed higher variability in rotifer abundance with more frequent outliers than large-sized reservoirs. On the other hand, apparent pattern was not observed for the rotifer species number. For the temporal pattern of rotifer density, COD, phytoplankton abundance fluctuation, and cladoceran abundance fluctuation have been suggested as potential factor affecting the rotifer abundance dynamics.