• Title/Summary/Keyword: 동적 지능형 환경

Search Result 99, Processing Time 0.037 seconds

Test and Evaluation for GNSS based Lane Level Precise Positioning User System (위성항법 기반 차로구분 정밀위치결정 사용자 시스템 시험 평가)

  • Lee, Jung-Hoon;Lee, Sangwoo;Ahn, Jongsun;Im, Sunghyuck;Choi, Yunseong;Jang, Youngsu;Lee, Dongchul;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.566-576
    • /
    • 2018
  • The C-ITS requires the lane level positioning of the vehicle in the land transportation environment, and it is most effective to utilize the GNSS. In the precision positioning system based on satellite navigation, the evaluation of dynamic environment of lane level positioning performance should be accompanied and the evaluation system configuration should be preceded. In this paper, we selected performance indicators, assessment equipment, and reliability of reference equipment for evaluation of precision positioning user systems based on the GNSS. The performance evaluation system described above is applied to a real system, and the performance evaluation tool developed for the evaluation system is described. The numerical performance evaluation was carried out based on the data collected by carrying out the actual testbed driving. The performance evaluation by the actual driving trajectory and driving image comparison was performed to derive and analyse the evaluation results of the vehicle lane level positioning user system.

Framework Design for Malware Dataset Extraction Using Code Patches in a Hybrid Analysis Environment (코드패치 및 하이브리드 분석 환경을 활용한 악성코드 데이터셋 추출 프레임워크 설계)

  • Ki-Sang Choi;Sang-Hoon Choi;Ki-Woong Park
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.403-416
    • /
    • 2024
  • Malware is being commercialized and sold on the black market, primarily driven by financial incentives. With the increasing demand driven by these sales, the scope of attacks via malware has expanded. In response, there has been a surge in research efforts leveraging artificial intelligence for detection and classification. However, adversaries are integrating various anti-analysis techniques into their malware to thwart analytical efforts. In this study, we introduce the "Malware Analysis with Dynamic Extraction (MADE)" framework, a hybrid binary analysis tool devised to procure datasets from advanced malware incorporating Anti-Analysis techniques. The MADE framework has the proficiency to autonomously execute dynamic analysis on binaries, encompassing those laden with Anti-VM and Anti-Debugging defenses. Experimental results substantiate that the MADE framework can effectively circumvent over 90% of diverse malware implementations using Anti-Analysis techniques and can adeptly extract relevant datasets.

Implementing Finite State Machine Based Operating System for Wireless Sensor Nodes (무선 센서 노드를 위한 FSM 기반 운영체제의 구현)

  • Ha, Seung-Hyun;Kim, Tae-Hyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.85-97
    • /
    • 2011
  • Wireless sensor networks have emerged as one of the key enabling technologies for ubiquitous computing since wireless intelligent sensor nodes connected by short range communication media serve as a smart intermediary between physical objects and people in ubiquitous computing environment. We recognize the wireless sensor network as a massively distributed and deeply embedded system. Such systems require concurrent and asynchronous event handling as a distributed system and resource-consciousness as an embedded system. Since the operating environment and architecture of wireless sensor networks, with the seemingly conflicting requirements, poses unique design challenges and constraints to developers, we propose a very new operating system for sensor nodes based on finite state machine. In this paper, we clarify the design goals reflected from the characteristics of sensor networks, and then present the heart of the design and implementation of a compact and efficient state-driven operating system, SenOS. We describe how SenOS can operate in an extremely resource constrained sensor node while providing the required reactivity and dynamic reconfigurability with low update cost. We also compare our experimental results after executing some benchmark programs on SenOS with those on TinyOS.

Design of Mobile Agent Model Supporting the Intelligent Path Search (지능형 경로 탐색 이동 에아전트 모델 설계)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.993-1000
    • /
    • 2002
  • In this paper, we design the CORBA-based Mobile Agent Model (CMAM) which has the capability of the efficient work processing in distributed environment through sensing network traffic and searching the optimal path for migration nodes of mobile agent. In case existing mobile agent model is given various works from user, the network overhead and traffic are increased by increasing of execution module size. Also, if it happens a large quantity of traffics due to migration of nodes according to appointment of the passive host(below node) routing schedule by user, it needs much cost for node search time by traffic. Therefore, in this paper, we design a new mobile agent m()del that assures the reliability of agent's migration through dynamic act on the specific situation according to appointment of the active routing schedule and can minimize agent's work processing time through optimal path search. The proposed model assigns routing schedule of the migration nodes actively using an extended MAFFinder. Also, for decreasing overhead of network by agent's size, it separates the existing mobile agent object by mobile agent including only agent calling module and push agent with work executing module based on distributed object type of CORBA. Also, it reduces the required time for round works of mobile agent through the optimal path search of migration nodes.

Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values (격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할)

  • Kim Ku-Jin;Baek Nakhoon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1369-1382
    • /
    • 2005
  • Vehicle segmentation, which extracts vehicle areas from road scenes, is one of the fundamental opera tions in lots of application areas including Intelligent Transportation Systems, and so on. We present a vehicle segmentation approach for still images captured from outdoor CCD cameras mounted on the supporting poles. We first divided the input image into a set of two-dimensional grids and then calculate the feature values of the edges for each grid. Through analyzing the feature values statistically, we can find the optimal rectangular grid area of the vehicle. Our preprocessing process calculates the statistics values for the feature values from background images captured under various circumstances. For a car image, we compare its feature values to the statistics values of the background images to finally decide whether the grid belongs to the vehicle area or not. We use dynamic programming technique to find the optimal rectangular gird area from these candidate grids. Based on the statistics analysis and global search techniques, our method is more systematic compared to the previous methods which usually rely on a kind of heuristics. Additionally, the statistics analysis achieves high reliability against noises and errors due to brightness changes, camera tremors, etc. Our prototype implementation performs the vehicle segmentation in average 0.150 second for each of $1280\times960$ car images. It shows $97.03\%$ of strictly successful cases from 270 images with various kinds of noises.

  • PDF

Design of Mobile Agent Model Supporting the Intelligent Path Search (지능형 경로 탐색을 지원하는 이동 에이전트 모델 설계)

  • Ko, Hyun;Kim, Kwang-Myoung;Lee, Yon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.550-554
    • /
    • 2002
  • In this paper, we design the CORBA-based Mobile-Agent Model (CMAM) which has the capability of the efficient work processing in distributed environment through sensing network traffic and searching the optimal path for migration nodes of mobile agent. In case existing mobile agent model is given various works from user, the network overhead and traffic are increased by increasing of execution module size. Also, if it happens a large quantity of traffics due to migration of nodes according to appointment of the passive host(node) muting schedule by user, it needs much cost for node search time by traffic. Therefore, in this paper, we design a new mobile agent model that assures the reliability of agent's migration through dynamic act on the specific situation according to appointment of the active routing schedule and can minimize agent's work processing time through optimal path search. The proposed model assigns routing schedule of the migration nodes actively using an extended MAFFinder. Also, for decreasing overhead of network by agent's size, it separated by mobile agent including oかy agent calling module and push agent with work executing module based on distributed object type of CORBA. Also, it can reduce the required time for round works of mobile agent through the optimal path search of migration nodes.

  • PDF

The Use of Reinforcement Learning and The Reference Page Selection Method to improve Web Spidering Performance (웹 탐색 성능 향상을 위한 강화학습 이용과 기준 페이지 선택 기법)

  • 이기철;이선애
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.3
    • /
    • pp.331-340
    • /
    • 2002
  • The web world is getting so huge and untractable that without an intelligent information extractor we would get more and more helpless. Conventional web spidering techniques for general purpose search engine may be too slow for the specific search engines, which concentrate only on specific areas or keywords. In this paper a new model for improving web spidering capabilities is suggested and experimented. How to select adequate reference web pages from the initial web Page set relevant to a given specific area (or keywords) can be very important to reduce the spidering speed. Our reference web page selection method DOPS dynamically and orthogonally selects web pages, and it can also decide the appropriate number of reference pages, using a newly defined measure. Even for a very specific area, this method worked comparably well almost at the level of experts. If we consider that experts cannot work on a huge initial page set, and they still have difficulty in deciding the optimal number of the reference web pages, this method seems to be very promising. We also applied reinforcement learning to web environment, and DOPS-based reinforcement learning experiments shows that our method works quite favorably in terms of both the number of hyper links and time.

  • PDF

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System (추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법)

  • Lee, O-Joun;You, Eun-Soon
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.119-142
    • /
    • 2015
  • With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.