• Title/Summary/Keyword: 동적 좌굴

Search Result 95, Processing Time 0.031 seconds

Dynamic Crush Strength Analysis of a Spacer Grid Assembly for a LWR Nuclear Fuel Assembly(II) (경수로 핵연료 지지격자의 동적 좌굴강도 해석(II))

  • Song, Kee-Nam;Lee, S.B.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.590-592
    • /
    • 2008
  • A spacer grid is one of the most important structural components in a LWR nuclear fuel assembly. The primary considerations are to provide a Zircaloy spacer grid with crush strength sufficient to resist design basis loads, without significantly increasing pressure drop across the reactor core. In this study, the dynamic crush strength analysis and test are carried out for the specimens of a spacer grid assembly.

  • PDF

Upper Bound Analysis of Dynamic Buckling Phenomenon of Circular Tubes Considering Strain Rate Effect (변형률 속도를 고려한 원형 튜브의 동적 좌굴 현상의 상계 해석에 관한 연구)

  • Park, Chung-Hee;Ko, Youn-Ki;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.711-716
    • /
    • 2008
  • A circular tube undergoes bucking behavior when it is subjected to axial loading. An upper bound analysis can be an attractive approach to predict the buckling load and energy absorption efficiently. The upper bound analysis obtains the load or energy absorption by means of assumption of the kinematically admissible velocity fields. In order to obtain an accurate solution, kinematically admissible velocity fields should be defined by considering many factors such as geometrical parameters, dynamic effect, etc. In this study, experiments and finite element analyses are carried out for circular tubes with various dimensions and loading conditions. As a result, the kinematically admissible velocity field is newly proposed in order to consider various dimensions and the strain rate effect of material. The upper bound analysis with the suggested velocity field accurately estimates the mean load and energy absorption obtained from results of experiment and finite element analysis.

  • PDF

Parametric Instability of Cylinderical Panels (주기적(週基的)인 압축하중을 받는 원통(円筒) Panel의 동적(動的) 불안정(不安定) 특성(特性)에 관한 연구)

  • Park, Sung Jin;Mikami, Takashi
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.737-748
    • /
    • 2000
  • This paper presents a numerical analysis procedure and a characteristics for dynamic of cylindrical panels. The panels with simply-simply or simply-clamped edge supports are subjectes to circumferential compressive or flexural stresses. The differential equations governing vibration and dynamic for these panels are derived by using the fundamental differential equation of the Love-Timoshenko and are solved numerically by the Galerkin method. The panel with simply-clamped edge supports is used a trigonometric function or an eigen function of a beam as a trial function and the effects of trial functions on numerical solutions are displayed. Numerical results are presented to demonstrate the effects of the flexural parameters in natural frequencies and coefficients of critical buckling, and some typical mode shapes of vibration and buckling are also presented.

  • PDF

The Numerical Modelling and Dynamic Collapse Analysis of the Rectangular Tube (사각관의 수치 모델링 및 동적 붕괴 해석)

  • 강신유;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.42-48
    • /
    • 1993
  • In this paper, dynamic collapse behavior of the rectangular tube under impact loading is anlayzed using nonlinear finite element method of shell element. In case of shell element formulation using corotational element coordinates system, dynamic collapse behavior is analyzed without initial imperfection, and with initial imperfection. This paper reveals that the collapse of a rectangular tue without initial imperfection is caused by an error of transformation of the corotational coordinates system.

  • PDF

Study on Deriving the Buckling Knockdown Factor of a Common Bulkhead Propellant Tank (공통격벽 추진제 탱크 구조의 좌굴 Knockdown Factor 도출 연구)

  • Lee, Sook;Son, Taek-joon;Choi, Sang-Min;Bae, Jin-Hyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.10-21
    • /
    • 2022
  • The propellant tank, which is a space launch vehicle structure, must have structural integrity as various static and dynamic loads are applied during ground transportation, launch standby, take-off and flight processes. Because of these characteristics, the propellant tank cylinder, the structural object of this study, has a thin thickness, so buckling due to compressive load is considered important in the cylinder design. However, the existing buckling design standards such as NASA and Europe are fairly conservative and do not reflect the latest design and manufacturing technologies. In this study, nonlinear buckling analysis is performed using various analysis models that reflect initial defects, and a method for establishing new buckling design standards for cylinder structures is presented. In conclusion, it was confirmed that an effective lightweight design of the cylinder structure for common bulkhead propulsion tank could be realized.

A Study on the Dynamic Instability Characteristics of Latticed Domes Under Sinusoidal Excitations (정현파 하중을 받는 래티스 돔 구조물의 동적 구조불안정 특성에 관한 연구)

  • Kim, Seung-Deog;Kang, Joo-Won;Jang, Je-Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.109-118
    • /
    • 2012
  • Few paper deal with the dynamic bucking under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. A space frame structure has high stiffness with a structure resisting external forces in steric conformation. According to many structural conditions, structural stability problems in the space frame are determined and considered very important. This study seeks to understand the space frame collapse mechanism using the 2-free nodes truss model in order to examine static structural instability characteristics of the latticed dome. According to geometrical shape, the star dome, parallel lamella dome and three way grid dome were selected as models. The models were examined for characteristics of instability behavior according to rise-span ratio(${\mu}$) and shape imperfection.

Free Vibrations and Buckling Loads of Beam-Columns on Winkler-Type Foundations (Winkler형 지반위에 놓인 보-기둥의 자유진동 및 좌굴하중 해석)

  • Jeong, Jin Seob;Lee, Byoung Koo;Oh, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.251-258
    • /
    • 1993
  • The main purpose of this paper is to present both the natural frequencies and the buckling loads of beam-columns on Winkler-type foundations. The ordinary differential equations governing the free vibrations and the buckling loads of beam-columns on Winkler-type foundation are derived as nondimensional forms. The Runge-Kutta method and Determinant Search method are used to perform the integration of the differential equations and to determine the eigenvalues(natural frequencies and buckling loads), respectively. Hinged-hinged and damped-clamped end constraints are applied in numerical examples. The relation between frequency parameter and elastic foundation parameter is presented in figure. The effects of axial loads on the natural frequencies of beam-columns on elastic foundations are investigated and the relation between buckling load parameter and elastic foundation parameter is also analyzed. The relation between foundation rested ratio and frequency parameter, buckling load parameter are investigated. The beam-columns on non-homogeneous elastic foundation are analyzed and typical mode shapes are also presented.

  • PDF

Prediction of Column Axial Force in X-braced Seismic Steel Frames Considering Brace Buckling (가새좌굴을 고려한 X형 내진 가새골조의 기둥축력 산정법)

  • Yoon, Won Soon;Lee, Cheol Ho;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.523-535
    • /
    • 2014
  • According to the capacity design concept underlying current steel seimsic provisions, the braces in concentrically braced frames should dissipate seismic energy through cyclic tension yielding and compression buckling. On the other hand, the beams and the columns in the braced bay should remain elastic for gravity load actions and additional column axial forces resulting from the brace buckling and yielding. However, due to the difficulty in accumulating the yielding and buckling-induced column forces from different stories, empirical and often conservative approaches have been used in design practice. Recently a totally different approach was proposed by Cho, Lee, and Kim (2011) for the prediction of column axial forces in inverted V-braced frames by explicitly considering brace buckling. The idea proposed in their study is extended to X-braced seismic frames which have structural member configurations and load transfer mechanism different from those of inverted V-braced frames. Especially, a more efficient rule is proposed in combining multi-mode effects on the column axial forces by using the modal-mass based weighting factor. The four methods proposed in this study are evaluated based on extensive inelastic dynamic analysis results.

Equation for Estimating Natural Frequencies of Initially Stressed Rectangular Plates (초기응력을 받는 직사각형판의 고유진동수 산정식 개발)

  • Park, Sung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.150-159
    • /
    • 2014
  • A simplified method for the calculation of buckling and vibrational characteristics of initially stressed rectangular plate and antisymmetric angle-ply laminated plates is presented in this paper using the natural frequencies under unloading state. The equation of motion of rectangular plate with two opposite edges simply supported is investigated on the basis of Rayleigh-Ritz method and Mindlin plate theory with effect of the curvature term. The relationships of the non-dimensional natural frequencies with initial stresses the coeffcients of critical buckling and the boundaries of the dynamic principal instability region can be characterized by the non-dimensional natureal frequencies under unloading state. Numerical examples are presented to verify the simplified equations and to illustrate potential applications of the analysis.

Buckling Behavior and Variation of Dynamic Characteristics under Shear Displacement of Cylindrical Shell (원통쉘의 좌굴 거동 및 전단 변위에 따른 동적 특성 변화)

  • 이창훈;우호길;구경회;이재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.756-759
    • /
    • 2001
  • The purpose of this paper is to investigate the buckling and dynamic characteristics for the cylindrical shell under shear loading. To do this, a vibration model tests and analyses and static buckling analyses were performed for the reduced scale model of nuclear reactor vessel. From the results of vibration modal analysis with the pre-shear displacement loads, it is known that the beam vibration mode is not affected by the shear displacement, however shell vibration modes are significantly affected by it. As the pre-shear displacement increases to the critical buckling displacement, the 1st shell vibration frequency in greatly reduces and approaches to zero value.

  • PDF