DOI QR코드

DOI QR Code

Study on Deriving the Buckling Knockdown Factor of a Common Bulkhead Propellant Tank

공통격벽 추진제 탱크 구조의 좌굴 Knockdown Factor 도출 연구

  • Lee, Sook (Space/Future Technology, Korean Air R&D Center) ;
  • Son, Taek-joon (Space/Future Technology, Korean Air R&D Center) ;
  • Choi, Sang-Min (Space/Future Technology, Korean Air R&D Center) ;
  • Bae, Jin-Hyo (Space/Future Technology, Korean Air R&D Center)
  • Received : 2022.05.30
  • Accepted : 2022.06.20
  • Published : 2022.06.30

Abstract

The propellant tank, which is a space launch vehicle structure, must have structural integrity as various static and dynamic loads are applied during ground transportation, launch standby, take-off and flight processes. Because of these characteristics, the propellant tank cylinder, the structural object of this study, has a thin thickness, so buckling due to compressive load is considered important in the cylinder design. However, the existing buckling design standards such as NASA and Europe are fairly conservative and do not reflect the latest design and manufacturing technologies. In this study, nonlinear buckling analysis is performed using various analysis models that reflect initial defects, and a method for establishing new buckling design standards for cylinder structures is presented. In conclusion, it was confirmed that an effective lightweight design of the cylinder structure for common bulkhead propulsion tank could be realized.

우주 발사체 구조인 추진제 탱크는 지상운송, 발사대기, 이륙 및 비행 과정 동안 다양한 정적 및 동적 하중이 작용하여 이에 대해 구조건전성을 보유해야 하며 더불어 추진제를 많이 싣기 위해서 크고 가벼워야 한다. 이런 특성으로 본 연구의 구조 대상인 추진제 탱크 실린더는 얇은 두께를 가지게 되어 실린더 설계에서 압축하중에 의한 좌굴이 중요하게 고려된다. 하지만 기존의 수립된 NASA 및 유럽 등의 좌굴 설계 기준은 상당히 보수적인 값으로 최신 설계 및 제작 기술을 반영하지 못하고 있다. 본 연구에서는 초기 결함이 반영된 다양한 해석 모델을 이용하여 비선형 좌굴 해석을 수행하고 실린더 구조의 새로운 좌굴 설계 기준 수립 방안을 제시한다. 결론적으로 공통격벽 추진제 탱크 실린더 구조의 효과적인 경량 설계가 구현될 수 있음을 확인하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 거대과학연구개발사업인 '스페이스파이오니어사업'에 의해 수행되었습니다(2021M1A3B9096761).

References

  1. Peterson, J.P., Seide, P. and Weingarten, V.I., "Buckling of thin-walled circular cylinder," NASA SP-8007, 1968.
  2. Kim, H.I., Sim, C.H., Park, J.S., Kim, D.Y, Yoo, J.T., Yoon, Y.H. and Lee, K.J., "Postbuckling Analyses and Derivations of Shell Knockdown Factors for Isogrid-Stiffened Cylinders Under Compressive Force and Internal Pressure," Journal of Korean Society for Aeronautical and Space Sciences, Vol. 48, No. 9, pp. 653-661, 2020. https://doi.org/10.5139/JKSAS.2020.48.9.653
  3. Hilburger, M.W., Lovejoy, A.E., Thornburgh, R.P. and Rankin, C., "Design and Analysis of Subscale and Full-Scale Buckling-Critical Cylinders for Launch Vehicle Technology Development," 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Hawaii, U.S.A., AIAA 2012-1865, April 2012.
  4. Hilburger, M.W., Haynie, W.T., Lovejoy, A.E., Roberts, M.G., Norris, J.P., Waters, W.A. and Herring, H.M., "Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures," 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Hawaii, U.S.A., AIAA 2012-1865, April 2012.
  5. EN 1993-1-6, "Eurocode 3-Design of steel structures - Part 1-6 : Strength and Stability of Shell Structures," 2007.
  6. Wagner, H.N.R., "Robust Design of Buckling Critical Thin-Walled Shell Structures," Dissertation, TU Braunschweig, 2019. DOI: 10.13140/RG.2.2.15095.16801.
  7. Weingarten, V.I., Morgan, E.J. and Seide, P., "Elastic stability of thin-walled cylindrical and conical shells under axial compression," AIAA 1965-3, 1965.
  8. Samuelson, L.A., Eggwertz, S.F., "Shell Stability Handbook," Taylor & Francis Inc., London England, 2005.
  9. Wullschleger, L. and Meyer-Piening, H.R., "Buckling of geometrically imperfect cylindrical shells - definition of a buckling load," International Journal of Non-Linear Mechanics, Vol. 37, pp. 645-657, 2002. https://doi.org/10.1016/S0020-7462(01)00089-0
  10. Kanemitsu, S. and Nojima, N., "Axial compression tests on thin circular cylinder," M.Sc. Thesis, California Institute of Technology, Pasadena, CA, 1939.
  11. Elishakoff, I., "Resolution of the Twentieth Century Conundrum in Elastic Stability," Singapore: World Scientific, 2014.
  12. Almroth, B., Burns, A., and Pittner, E., "Design criteria for axially loaded cylindrical shells," Journal of Spacecraft and Rockets, Vol. 7, No. 6, pp. 714-720, 1970. https://doi.org/10.2514/3.30025
  13. DASt-Richtlinie 013: Beulsicherheitsnachweis fur Schalen, Deutscher Ausschuss fur Stahlbau, Stahlbauverlag, Koln, 1980.
  14. Castro, S.G., Zimmermann, R., Arbelo, M.A., Khakimova, R., Hilburger, M.W. and Degenhardt, R., "Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells," International Journal of Thin-Walled Structures, Vol. 74, pp. 118-132, 2014.
  15. Teng, J.G. and Rotter, J.M., "Buckling of Thin Metal Structures," CRC press, London, pp. 42-87, 2004.
  16. lazejewski, P., Marcinowski, J. and Rotter, M., "Buckling of externally pressurised spherical shells: Experimental results compared with recent design recommendations," Eurosteel 2017, Vol. 1, Issue 2-3, pp. 1010-1018, 2017.
  17. Croll, J., "Towards a rationally based elastic-plastic shell buckling design," International Journal of Thin-Walled Structures, Vol. 23, pp. 67-84, 1995.
  18. Wagner, H.N.R., Huhne, C., Zhang, J. and Tang, W., "On the imperfection sensitivity and design of spherical domes under external pressure," International Journal of Pressure Vessels and Piping, Vol. 179, 104015, 2020. https://doi.org/10.1016/j.ijpvp.2019.104015