• Title/Summary/Keyword: 동적 운동

Search Result 760, Processing Time 0.031 seconds

The Study of Dynamic Instability of Supercavitating Shell Structures (초공동 운동체 구조물의 동적 불안정성 연구)

  • Kim, Seung-Jo;Byun, Wan-Il;Jang, Chae-Kyu;Cho, Jin-Yeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.469-471
    • /
    • 2010
  • Supercavitating vehicles which cruise under water undergo high longitudinal force caused by thrust and drag. These combination may cause structural buckling. Static and dynamic buckling analysis method by using FEM can be used to predict this structural failure behavior. In this paper, some principles which include method for solution eigenvalue problem for buckling analysis are introduced. And before buckling analysis, we predicted some mode shape and natural frequency of cylindrical shell by using DIAMOND/IPSAP eigen-solver.

  • PDF

Numerical Analysis for Nonlinear Static and Dynamic Responses of Floating Crane with Elastic Boom (붐(Boom)의 탄성을 고려한 해상크레인의 비선형 정적/동적 거동을 위한 수치 해석)

  • Cha, Ju-Hwan;Park, Kwang-Phil;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.501-509
    • /
    • 2010
  • A floating crane is a crane-mounted ship and is used to assemble or to transport heavy blocks in shipyards. In this paper, the static and dynamic response of a floating crane and a heavy block that are connected using elastic booms and wire ropes are described. The static and dynamic equations of surge, pitch, and heave for the system are derived on the basis of flexible multibody system dynamics. The equations of motion are fully coupled and highly nonlinear since they involve nonlinear mass matrices, elastic stiffness matrices, quadratic velocity vectors, and generalized external forces. A floating frame of reference and nodal coordinates are employed to model the boom as a flexible body. The nonlinear hydrostatic force, linear hydrodynamic force, wire-rope force, and mooring force are considered as the external forces. For numerical analysis, the Hilber-Hughes-Taylor method for implicit integration is used. The dynamic responses of the cargo are analyzed with respect to the results obtained by static and numerical analyses.

The Influence of Combined Exercise Training with and without Blood Flow Restriction on Physical Performance and Balance in Elderly Females (복합운동에 혈류제한 적용과 비적용이 여성노인들의 운동수행능력과 평형성에 미치는 영향)

  • Kim, Daeyeol;Kang, Hyo-Young;Park, Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.363-371
    • /
    • 2021
  • The goal of this study was to investigate the influence of exercise training with or without blood flow restriction (BFR) on physical performance and balance in elderly females. Participants (N = 43) were randomly divided into combined exercise with BFR group (n = 14, EX-BFR), only combine exercise group (n =14, EX) or a non-exercise control group (n = 15, CON). Both EX-BFR and EX groups had completed exercise training for 12 weeks. During the training period, the CON group maintained their normal lives. After baseline tests, two-way repeated measures ANOVA with contrast testing was conducted using SPSS 22.0. Study results found that physical performance and balance in both EX-BFR and EX groups were significantly improved, and fall index in both EX-BFR and EX groups were significantly decreased. There were no changes in the CON group. In addition, the % change and effect size of all variables in the EX-BFR group were larger than the EX group. So, the results showed that the EX-BFR group had performed more intense exercise caused by restricted blood flow during the training period compared to the EX group. Thus, exercise with BFR training may additionally influence physical performance and balance in elderly females.

Seismic Fragility Curves for Multi-Span Concrete Bridges (다경간 콘크리트 교량의 지진 취약도)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.35-47
    • /
    • 2003
  • Seismic ground motion can vary significantly over distances comparable to the length of a majority of highway bridges on multiple supports. This paper presents results of fragility analysis of two actual highway bridges under ground motion with spatial variation. Ground motion time histories are artificially generated with different amplitudes, phases, as well as frequency contents at different support locations. Monte Carlo simulation is performed to study dynamic responses of the bridges under these ground motions. The effect of spatial variation on the seismic response is systematically examined and the resulting fragility curves are compared with those under identical support ground motion. This study shows that ductility demands for the bridge columns can be underestimated if the bridge is analyzed using identical support ground motions rather than differential support ground motions. Fragility curves are developed as functions of different measures of ground motion intensity including peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(SA), spectral velocity(SV) and spectral intensity(SI). This study represents a first attempt to develop fragility curves under spatially varying ground motion and provides information useful for improvement of the current seismic design codes so as to account for the effects of spatial variation in the seismic design of long-span bridges.

The Effects of Yoga Exercise on Balance and Gait Velocity in Stroke Patient (요가운동이 뇌졸중 환자의 균형과 보행속도에 미치는 영향)

  • Song, Hyun-Seung;Kim, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.294-300
    • /
    • 2013
  • The purpose of this study was to analyse the effects of yoga exercise on balance ability and gait velocity in stroke patients. Subjects were categorized in to a control group and yoga program group with 9 for each group. Yoga program was conducted for 60minute for 8weeks, three times a week. For the purposes, the study measured Stability Index(SI, postural sway) and Weight Distribution Index(WDI) using Tetrax, Functional Reach Test(FRT), Dynamic Gait index(DGI) and 10 meter walking test. At pre- and post-exercise after appling the yoga exercise, the data was analyzed. Yoga exercise group's SI and WDI were decreased, FRT and DGI were increased in comparison with control group. But 10 meter walking test was no significance. It suggests that the yoga exercise could promote recovery from balance disorder after stroke.

Self-Organizing Fuzzy Control of a Flexible Joint Manupulator (유연 관절 매니퓰레이터의 자기 구성 퍼지 제어)

  • 박준형;이시복;선용호;이길랑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.45-50
    • /
    • 1994
  • 최근의 로봇 매니퓰레이터는 고정밀, 고생산성, 유연성 자동화를 추구한다. 이에 따라 매니퓰레이터는 운동 정확성, 고속성, 안정성이 더욱 향상되어야 한다. 특히 매니퓰레이터 관절부의 탄성은 동적 변형 및 진동을 유발함으로써 운동 정확성과 안정성을 현저히 저하시킨다. 이러한 복잡하고 불확실한 구조를 갖는 로봇 시스템의 고속, 정확한 운동 제어를 위해서는 보다 효과적인 고급 제어 기법 및 제어 장치의 개발이 요구된다. 본 연구에서는 이러한 문제에 대한 하나의 대응 방법으로 인간의 지식 처리 방법을 모방한 퍼지제어를 적용하여 그 가능성을 본다.

  • PDF

Three-Dimensional Wave Control and Dynamic Response of Floating Breakwater Moored by Piers (말뚝계류된 부방파제의 공간파랑제어 및 동적거동에 관한 연구)

  • 김도삼;윤희면
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.183-191
    • /
    • 2002
  • In general, the salient features of the floating breakwater have excellent regulation of sea-water keeping the marine always clean, up and down free movement with the incoming and outgoing tides, capable of being installed without considering the geological condition of sea-bed at any water depth. This study discusses the three dimensional wave transformation of the floating breakwater moored by piers, and its dynamic response numerically. Numerical method is based on the boundary integral method and eigenfunction expansion method. It is known that pier mooring system has higher absorption of wave energy than the chain mooring system. Pier mooring system permit only vertical motion (heaving motion) of floating breakwater, other motions restricted. It is assumed in the present study that a resistant force as friction between piers and floating pontoon is not applied far the vertical motion of the floating breakwater. According to the numerical results, draft and width of the floating breakwater affect on the wave transformations greatly, and incident wave of long period is well transmitted to the rear of the floating breakwater, And the vertical motion come to be large for the short wave period.

A Meta Analysis of the Effects of Physical Activity Programs in the Elderly with Disabilities (장애노인 신체활동 프로그램 효과에 대한 메타분석)

  • Kim, Kyungjin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.301-308
    • /
    • 2018
  • The study conducted a meta analysis to identify the effects of physical activity programs for the elderly with disabilities. The 14 out of 177 studies, fulfilled the process and requirement, were selected for the Hedges'g, funnel plot, forest plot, Egger's regression test, trim-and-fill, fail-safe N. There were three conclusions based on the results. First, the physical activity was effective for the elderly with disabilities and showed good effects on the psychomotor, cognitive, and affective domains. Second, the physical activity programs of fundamental exercise skill, game and sport, and fitness exercise showed positive effects on the psychomotor, cognitive, and affective domains in the elderly with disabilities. Third, the fundamental exercise skill for the psychomotor domain, the game and sport for the cognitive domain, and the fitness exercise for the affective domain were the most effective for the elderly with disabilities.

Development of Mathematical Model to Predict Dynamic Muscle Force Based on EMG Signal (근전도로부터 동적 근력 산정을 위한 수학적 모델 개발)

  • 한정수;정구연;이태희;안재용
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.315-321
    • /
    • 1999
  • The purpose of this study is to develop a mathematical model for system identification in order to predIct muscle force based on eledromyographic signal. Therefore, a finding of the relalionship between characteristics of electromyographic signal and the corre spondng muscle force should be necessiiry through dynamic, joint model. To develop the dynamic joint model, the upper limb mcludmg the wrist and elbow joint has been considered. The kinematic and dynamic data, such as joint angular displacement, velocity, deceleration along with the moment of inertla, required to establish the dynamic model has been obtained by electrical flexible goniometer which has two degree-of-frcedoms. ln this model, muscle force can be predicted only electromyographs through the relationship between the integrated lorce and the mtegrated electromyographic signal over the duration of muscle contraclion in this study.

  • PDF

Prediction of the Out-of-plane Motion due to the In-plane Excitation (평면내 방향 기진력에 의한 평면밖 방향 운동의 예측)

  • Oh, Il-Geun
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 1993
  • 삼 자유도를 가진 부유물체의 동적 응답을 이론적으로 연구하였다. 평면내 방향 운동모우드에 대한 지배방정식을 선형화한 후, 그들의 조화해를 평명밖 방향 운동모우드의 방정식과 연성시켰다. 그렇게 해서 주어지는 방정식은 시간에 따라 변화하는 계수를 가진 형태로서, 평면밖 방향의 운동만을 보일 것으로 예측되는 부유물체가 평면밖 방향의 운동을 보일 수도 있음을 밝혔다. 동역학적 불안정성과 그 결과로 나타나는 평면밖 방향의 대진폭 운동을 보이고 있다. 본 결과는 주기적으로 동요하는 부유물체가 서로 연성된 운동을 하는 현상으로도 해석할 수 있다.

  • PDF