• Title/Summary/Keyword: 동적 설계 해석법

Search Result 228, Processing Time 0.02 seconds

R. C. 건축물의 지진해석에서의 원칙과 특성

  • 이한선
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.27-37
    • /
    • 1998
  • 본 고에서는 지진해석과 관련하여 가장 중요한 원칙과 해석법에 대한 개략을 제시하여 철근콘크리트 구조물의 지진해석과 관련된 용어 및 특수과제를 언급하고자 한다. 이 해석의 위력이나 매력적인 점에도 불구하고 지진응답에 대한 해석은 항상 많은 불확실성에 부닥칠 수 있다는 것을 강조하고자 한다. 해석은 설계과정의 한 단계에 불과하여 수많은 컴퓨터 출력 페이지가 빈틈없는(sound) 기술적 판단을 대신하여서는 안된다. 구조물에 있어서의 지진력은 외부에서 가해진 하중으로부터 발생하는 것이 아니다. 구조물에 압력 및 흡입력으로 작용하는 풍하중과는 달리, 구조물의 기저(base)에서의 주기적 운동에 의한 응답으로서 상부구조물은 가속도를 받게 되고 따라서 관성력으로서 지진력이 얻어지게 된다. 지진응답은 기본적으로 동적인 성질을 가지며 고유주기와 감쇠와 같은 동적 특성은 이 응답을 결정하는데 결정적인 역할을 한다. 만약 지진해석이 실제적인 것이 되자면, 단순화된 방식으로라도 이러한 동적 특성을 고려할 수 있는 것이어야 한다. 이러한 동적 성질이 복잡성의 한 요인이며, 다른 요인으로서 해석적 장애가 존재한다. 대부분의 구조물은 최대지진에 대하여 상당한 항복현상을 나타냄으로써 저항하도록 설계하고 있다. 따라서 설계자는 최대지진에 대한 구조물의 비선형 동적 거동에 대하여 어느 정도 이해를 하고 있어야 한다. 원칙적으로 이것은 매우 복잡하고 어려운 해석적 문제를 제기하게 된다. 실제로는 매우 단순화된 해석법, 적절한 설계 및 상세의 조합만으로도 만족스러운 거동을 얻는 것에 부족함이 없다. 어쨌든 이러한 해석기법의 바탕과 한계를 이해하는 것은 필수적이다.tidyl ethanolamine$(20.9{\sim}29.7%)$, phosphatidyl inositol$(18.4{\sim}26.1%)$ 순으로 많았다. 각 구성지질의 지방산조성은 4종의 버섯 공히 linoleic acid와 palmitic acid가 주요 지방산이었으나 싸리버섯은 중성지질에서 oleic acid의 함량이 높았다.n the part of special landscape management area, it is necessary to introduce landscape impact assessment system to more effective landscape management.ch served as supporting organizations. The control of the construction and management of the royal garden and landscape was held by decision makers, executors of works and management. 2) The general process of the construction and management of the royal garden and landscape included Sangji and Kyuho다 as the first step; In case of buildings and facilities, according to former examples and drawings, the most of the planning and design was already fixed.

  • PDF

Structural Optimization Using Equivalent Static Loads and Substructure Synthesis Method (등가정하중법과 부분구조합성법을 이용한 구조최적설계)

  • Choi, Wook Han;Na, Yoo Sang;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.823-830
    • /
    • 2015
  • Structural optimization pursues improved performance of structures. Nowadays, structural optimization is applied to the design of huge and complex structures such as an airplane. As the number of the finite elements is increased, the analysis solution becomes more accurate. However, the design cost using the finite element model is significantly increased. The component mode synthesis method that is using the substructure synthesis method is frequently employed in order to keep the accuracy and reduce the cost. A new design method for structural optimization is proposed to reduce the design cost and to consider the dynamic effect of the structure. The proposed method reduces the design cost by applying the equivalent static loads on the design domain. An example of linear dynamic response optimization is solved and the efficiency of the proposed method is demonstrated.

The Design Eccentricity for Torsionally Unbalanced Structure (비틀림 거동을 하는 구조물의 설계 편심)

  • 조소훈;이명규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.63-72
    • /
    • 2001
  • In this paper, to satisfy the safety and economy immediately, we assume the center of lateral load in case the dynamic motion of the torsionally unbalanced structure is transformed into the static lateral load using modal analysis and proposes a method to control the design eccentricity in order to make the center of lateral load coincide with the center of strength. And when the structure is designed by proposed method, it is shown that the structure designed by proposed method does not demand excessive additional ductility in comparison with the structure designed by provisions of other seismic building code.

  • PDF

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

A study on dynamic design for the sub-micro vibration control of substructure in semi-conductor factory (반도체공장에서 미진동제어를 위한 격자보의 동적 설계에 관한 연구)

  • 이홍기;권형오;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.52-57
    • /
    • 1994
  • 본 논문에서는 실험적 모우드해석법을 이용하여 현재, 국내에서 가동 또는 건설 중인 반도체공장의 세가지 유형에 대한 격자보의 동적특성을 분석, 결정하고 이를 격자보의 동적설계에 활용하고자 한다.

  • PDF

Seismic Analysis of Tunnel Structures (터널구조물의 내진해석)

  • Lee, In-Mo;An, Dae-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.3-15
    • /
    • 2001
  • Generally, it has been noted that underground structures have a consistent record of suffering much less damage than surface facilities during earthquakes; but it is still necessary to illustrate the dynamic response of tunnel structures subject to earthquake loadings and to provide the appropriate method for the seismic analysis of underground tunnel structures since many types of underground structures have been and will be constructed in countries situated within seismic zones. In this study, first, seismic analyses for underground tunnel structures are performed by using quasistatic analysis method and dynamic analysis method. Second, seismic analyses in tunnel portals are performed by using above methods. The results of seismic analyses for the tunnel structure show that the tunnel structure conforms to ground deformation and that seismic design by using the quasi-static analysis method is more conservative than that by using the dynamic analysis. The results of the dynamic FEM analysis for the tunnel structure show that the simplified 2-D FEM analysis using a sine wave rather than the 3-D FEM analysis can be adopted for seismic analysis. Finally, the results of the dynamic FEM analysis in tunnel portals show that the force acting on the lining is largest near to the tunnel portal when an earthquake wave propagates parallel to tunnel axis.

  • PDF

충격 및 폭발하중에 의한 동적파괴 해석기법

  • 김경수
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.22-29
    • /
    • 1997
  • 본 논문에서는 균열이 존재하는 구조부재에 충격이나 폭발하중이 가해진 경우 동적응력확대계수를 구하는 방법들은 논의하고 특히 코오스틱 실험법 및 수치적으로 코오스틱 곡선을 구하여 동적응력확대계수를 구하는 과정을 자세히 설명하였다. 폭발 및 충격에 의한 구조물의 파괴해석은 이와 같은 하중을 받는 압력용기, 빌딩, 초고속선, 해군 함정 등의 파괴강도설계 및 안전성 평가에 핵심기술로 대두되고 있으며 또한 우주항공산업, 고속전철, 암반역학 등의 여러 분야에서 중요한 의미를 갖는다. 따라서 앞으로도 균열진전 및 정지조건, 탄소성 동적파괴해석 및 재료의 충격거동 등에 대한 연구들이 계속되어져야 할 것으로 사료된다.

  • PDF

Evaluation of seismic performance of road tunnels in operation (운영 중인 도로 터널의 내진 성능 평가)

  • Ahn, Jae-Kwang;Park, Du-Hee;Kim, Dong-Kyu;Kim, Kwang-Yeom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.69-80
    • /
    • 2013
  • This study evaluates the seismic performance of road tunnels designed before the provisions for seismic design of tunnels were first established in 1999. Extensive design data and site investigation reports are investigated to select tunnels sections that are considered to be most susceptible to seismically induced damage under earthquake loading. Detailed analyses are performed on selected tunnels. The methods used are method of displacement and dynamic analysis. In performing the method of displacement, which is a type of pseudo-static analysis method used for underground structures, full domain and reduced domain modeling were used. The dynamic analyses are performed using finite difference method and using nonlinear constitutive model. Comparisons show that the reduced domain method of displacement match very closely with the dynamic analysis, demonstrating that it is the most suitable method for evaluating the seismic performance of road tunnels built in rocks. It is also shown that road tunnels, for which seismic design were not applied, are safe under the seismic risks corresponding to an earthquake with a return period 1000 years. It is concluded that additional seismic retrofit of tunnels is not necessary.

Application of Energy Dissipation Capacity to Earthquake Design (내진 설계를 위한 에너지 소산량 산정법의 활용)

  • 임혜정;박홍근;엄태성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.109-117
    • /
    • 2003
  • Traditional nonlinear static and dynamic analyses do not accurately estimate the energy dissipation capacity of reinforced concrete structure. Recently, simple equations which can accurately calculate the energy dissipation capacity of flexure-dominated RC members, were developed in the companion study. In the present study, nonlinear static and dynamic analytical methods improved using the energy-evaluation method were developed. For nonlinear static analysis, the Capacity Spectrum Method was improved by using the energy-spectrum curve newly developed. For nonlinear dynamic analysis, a simplified energy-based cyclic model of reinforced concrete member was developed. Unlike the existing cyclic models which are the stiffness-based models, the proposed cyclic model can accurately estimate the energy dissipating during complete load-cycles. The procedure of the proposed methods was established and the computer program incorporating the analytical method was developed. The proposed analytical methods can estimate accurately the energy dissipation capacity varying with the design parameters such as shape of cross-section, reinforcement ratio and arrangement, and can address the effect of the energy dissipation capacity on the structural performance under earthquake load.

Shape Design Sensitivity Analysis of Dynamic Crack Propagation Problems using Peridynamics and Parallel Computation (페리다이나믹스 이론과 병렬연산을 이용한 균열진전 문제의 형상 설계민감도 해석)

  • Kim, Jae-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • Using the bond-based peridynamics and the parallel computation with binary decomposition, an adjoint shape design sensitivity analysis(DSA) method is developed for the dynamic crack propagation problems. The peridynamics includes the successive branching of cracks and employs the explicit scheme of time integration. The adjoint variable method is generally not suitable for path-dependent problems but employed since the path of response analysis is readily available. The accuracy of analytical design sensitivity is verified by comparing it with the finite difference one. The finite difference method is susceptible to the amount of design perturbations and could result in inaccurate design sensitivity for highly nonlinear peridynamics problems with respect to the design. It turns out that $C^1$-continuous volume fraction is necessary for the accurate evaluation of shape design sensitivity in peridynamic discretization.