• Title/Summary/Keyword: 동적좌굴

Search Result 95, Processing Time 0.023 seconds

Vibrational Chacacteristics of Initially Stressed Laminated Plates (초기응력을 받는 적층판의 진동특성에 관한 연구)

  • Park, Sung-Jin;Baek, Joo-Eun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.188-189
    • /
    • 2016
  • 본 논문은 초기하중을 하중을 받는 역대칭 angle-ply 와 cross-ply 적층판의 좌굴 및 진동특성을 무재하시의 고유진동수를 이용하여 산정하는 간편법을 제시하였다. 마주보는 두변이 단순 지지된 역대칭 적층판의 운동방정식은 전단변형과 회전강성효과를 고려한 YSN 이론으로 유도하였으며 이를 선점법을 이용하여 해석하였다. 초기응력을 받는 적층판의 무차원화 고유진동수, 임계좌굴계수 및 동적 주 불안정영역 문제들을 무재하시의 무차원화 고유진동수로서 각각의 특성을 정립시켰다. 본 연구에서 제안한 진동특성에 관한 간편산정식의 정당성과 사용성을 입증하기 위하여 수치예들로서 검토하였다.

  • PDF

A Study on the Seismic Evaluation of Steel Piers by Earthquake Response Characterisitcs (지진응답특성에 의한 강재교각의 내진성 평가에 관한 연구)

  • 권영록;손영호;최광규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.45-53
    • /
    • 2000
  • 강재 교각을 갖는 고가교량은 상부구조가 매우 큰 질량을 갖는 거대구조가 되고 규모가 큰 지진운동 하에서 대단히 큰 관성력을 받게 된다. 따라서 탄소성 동적응답 해석에 의해서 강재 교각의 지진거동을 파악하는 것이 필요하다 . 본 연구에서는, 탄소성 동적응답해석을 위한 합리적인 수치해석방법을 제시하고 이를 바탕으로 강재 교각에 대한 내진성 평가를 수행한다. 1995년 고베 지진 시 손상을 받은 강재 교각과 그 이후 재구축된 교각을 모델로 해서 국부좌굴 이전 소성화의 영향만을 고려한 강재 교각의 지진 거동을 파악한다. 입력지진파는 고베 지진시 관측된 Takatori 지진파이고 이를 가속도 진폭 조정하여 사용한다.

  • PDF

Seismic Performance Evaluation of Recentering Braced Frame Structures Using Superelastic Shape Memory Alloys - Nonlinear Dynamic Analysis (초탄성 형상기억합금을 활용한 자동복원 가새 프레임 구조물의 내진성능 평가 - 비선형 동적해석)

  • Ban, Woo-Hyun;Hu, Jong-Wan;Ju, Young-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.353-362
    • /
    • 2020
  • Korea was recognized as a relatively safe area for earthquake. However, due to considerable damage to facilities caused by the earthquake in Gyeongju and Pohang, interest in the maintenance and repair of structures is increasing. So interest in vibration damping technology applicable to existing structures is also increasing. However, vibration damping technology has a problem in that its usability is reduced due to damage of the damping device when a strong earthquake occurs. Recently, in order to solve such a problem, study is being conducted to apply a superelastic shape memory alloys (SSMA) capable of recentering bracing. Therefore, in this study, nonlinear dynamic analysis is performed to evaluate the seismic performance of the buckling-restrained braced frame (BRBF) applied SSMA to bracing.

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Dynamic Response of Triangular Solar Sail with Wrinkles (주름이 있는 삼각형 태양돛의 동적해석)

  • Bae, Hongsu;Woo, Kyeongsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.195-203
    • /
    • 2015
  • In this paper, the dynamic behavior of wrinkled triangular solar sail was studied by finite element analysis. The analysis was proceeded first by performing static wrinkle analysis under tensile corner load on sail membrane, and then performing modal analysis. The membrane element method with wrinkle algorithm and the shell element post-buckling analysis method were used to account for the wrinkle deformation and the results were compared for analysis methods throughly. The comparison was also made to that without wrinkle consideration to investigate the effect of wrinkle deformation on the results. Cases with various loading cable angles were analyzed and the results were systematically examined.

Mechanical Characteristics of Laminated Rubber Bearings for Seismic Isolation (면진용 적층고무베어링의 기계적 역학특성)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.79-89
    • /
    • 1997
  • The objective of this paper is to investigate the mechanical characteristics of the laminated rubber bearings (LRBs) for the seismic isolation. The evaluations of the proposed equations of the LRB horizontal stiffness are carried out and these equations are extended to the visco-elastic problems to investigate the damping amplifications of LRBs. The stability evaluation of LRBs is also performed. For investigation of the dynamic characteristics of LRBs, the horizontal stiffness equations of the LRBs considering the P-delta effects are applied to the modeling of a seismically isolated structure and the earthquake response time history analyses are carried out. From this research, the proposed simple equation of the horizontal stiffness of LRB is so useful for the design loads and easily extended to the visco-elastic problems. Through the stability evaluation of LRB, the increasing ratio of the total rubber thickness of the LRB severely decrecises the bucking load than the increasing ratio of unit rubber thickness. From the comparison of the dynamic shear deflection of LRB, the analysis results are in good agreement with those of the experiments.

  • PDF

Spectral Analysis of Nonliner Dynamic Response for Dynamic Instability of Shallow Elliptic Paraboloidal Shells (얕은 타원포물곡면쉘의 동적 불안정 현상의 규명을 위한 비선형 동적 응답의 스펙트럼 분석)

  • 김승덕
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-161
    • /
    • 1995
  • The dynamic instability for snapping phenomena has been studied by many researchers. There is few paper which deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against step excitation. In this study, the dynamic direct snapping of shallow elliptic paraboloidal shells is investigated under not only step excitation but also sinusoidal and seismic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equations of motion, and examined by the Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels. The results show that the dynamic instability phenomenon carried out from stable to unstable region reveals considerably different mechanism depending on the characteristics of excitations.

  • PDF

Seismic Design of Columns in Inverted V-braced Steel Frames Considering Brace Buckling (가새좌굴을 고려한 역 V형 가새골조의 기둥부재 내진설계법)

  • Cho, Chun-Hee;Kim, Jung-Jae;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • According to the capacity design concept which forms the basis of the current steel seismic codes, the braces in concentrically braced frames (CBFs) should dissipate seismic energy through cyclic tension yielding and cyclic compression buckling while the beams and the columns should remain elastic. Brace buckling in inverted V-braced frames induces unbalanced vertical forces which, in turn, impose the additional beam moments and column axial forces. However, due to difficulty in predicting the location of buckling stories, the most conservative approach implied in the design code is to estimate the column axial forces by adding all the unbalanced vertical forces in the upper stories. One alternative approach, less conservative and recommended by the current code, is to estimate the column axial forces based on the amplified seismic load expected at the mechanism-level response. Both are either too conservative or lacking technical foundation. In this paper, three combination rules for a rational estimation of the column axial forces were proposed. The idea central to the three methods is to detect the stories of high buckling potential based on pushover analysis and dynamic behavior. The unbalanced vertical forces in the stories detected as high buckling potential are summed in a linear manner while those in other stories are combined by following the SRSS(square root of sum of squares) rule. The accuracy and design advantage of the three methods were validated by comparing extensive inelastic dynamic analysis results. The mode-shape based method(MSBM), which is both simple and accurate, is recommended as the method of choice for practicing engineers among the three.

Dynamic Buckling Characteristics of Arch Structures Considering Geometric Nonlinearity (기하학적 비선형을 고려한 정현형 아치 구조물의 동적 좌굴 특성)

  • 윤태영;김승덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.492-497
    • /
    • 2003
  • The dynamic instability for snapping phenomena has been studied by many researches. There is few paper which deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures subjected to sinusoidal distributed excitation with pin-ends. In this study, the dynamic direct snapping of shallow arches is investigated under not only STEP load excitation but also sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equations of motion, and examined by the Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF

Dynamic Stability Analysis of Clamped-Hinged Columns with Constant Volume (일정체적 고정-회전 기둥의 동적안정 해석)

  • Kim, Suk-Ki;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1074-1081
    • /
    • 2006
  • This paper deals with the dynamic stability analysis of clamped-hinged columns with constant volume. Numerical methods are developed for solving natural frequencies and buckling loads of such columns, subjected to an axial compressive load. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are always held constant. Differential equations governing both free vibrations and buckled shapes of such columns are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. The numerical methods developed herein for computing natural frequencies and buckling loads are found to be efficient and robust. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are reported in figures and tables.