• Title/Summary/Keyword: 동적성능시험

Search Result 244, Processing Time 0.026 seconds

Shaking Table Tests for Evaluation of Seismic Performance of Quay Walls (안벽 구조물의 내진성 평가를 위한 진동대 시험)

  • 김성렬;박영호;권오순;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.75-81
    • /
    • 2000
  • 본 연구에서는 진동대 시험을 실시하여 지진동에 대한 일반 안벽 구조물과 내진 보강된 안벽 구조물의 동적거동을 분석하고 내진보강기법의 성능을 평가하였다. 진동대 시험은 기초지반이 조밀한 경우와 느슨한 경우, 자갈 뒤채움재를 설치한 경우 그리고 내진대책공법으로 경량재 치환공법과 모래다짐말뚝 공법을 적용한 경우 등 총 5가지 시험단면에 대하여 실시하였다. 과잉간극수압, 가속도 반응 그리고 지반의 변형양상을 분석한 결과, 기초지반과 뒤채움 지반의 연약화가 안벽 구조물의 동적거동에 큰 영향을 미치며, 경량재 치환공법과 모래다짐말뚝공법이 안벽 구조물의 내진성능을 향상시키는에 효과적인 것으로 나타났다.

  • PDF

Design and Performance Test of Rubber Engine Mount for Isolation Large Structures (방진고무를 이용한 대용량 엔진마운트의 제작 및 성능시험)

  • 유춘화;김충식;박상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.93-97
    • /
    • 1993
  • 방진고무는 진동을 방지하여 다른 구조물의 진동전달 차단은 물론, 장비의 수명연장 및 효율을 증가시키기 위한 목적으로 사용되는데 이러한 방진고무 의 동적특성을 일반화하는 것은 어렵기 때문에 방진고무 시편의 동특성 해 석시험 결과치를 기준으로 원하는 성능에 부합하도록 방진고무의 재질을 선 정하고 사양에 의한 엔진마운트를 설계 제작하여야 한다. 이번에 제작한 UEM 엔진마운트는 해상용, 육상용 설비에 적용 가능하며, 특히 해상용에 적 용하고 외부 환경에 의한 부식으로부터 방진고무 및 기자재를 보호하기 위 하여 하우징을 특수재질로 제작하였고, 수직.수평력을 고려하여 큰 하중에 견딜 수 있도록 원추형 형상설계와 강성을 보강하였다. 특히, 원추형 형상으 로 제작하여 하중을 일정하게 분산시키고, 사용 가능한 선형영역을 확대 시 켰으며, Buffer(Steel Bar)를 이용하여 높은 파고 등에 의한 외부 충격량에 따른 큰 변위의 발생으로부터 설비를 보호할 수 있다. 본 논문에서는 물리적 특성이 같은 방진고무를 사용하고, 적층 수만 다르도록 두가지 모델 UEM-155와 UEM-255를 설계 제작하여 수직.수평방향의 정적시험, 동적시 험, 현장 장착시험 등을 수행함으로써 기업에서 요구한 사양에 적합한가를 고찰하였다.

  • PDF

Evaluation of the Performance Test Load through the Estimation of Vertical Loads on Vibration-Proof Fastening Systems (방진체결장치에 작용하는 수직하중 평가를 통한 성능시험하중 평가)

  • Yang, Sin Chu
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.777-784
    • /
    • 2016
  • In this study, regulation of the performance test load of a vibration-proof fastening system used in urban railways was established through evaluation of the loads that it bears in the field. In order to investigate the range of the dynamic stiffness of the vibration-proof fastening system, dynamic stiffness tests were carried out for three types of vibration-proof fastening system that can be domestically supplied. Train and track interaction analyses in the frequency domain were carried out to evaluate the dynamic wheel loads. The track irregularity, which is a very important input factor in train and track interaction analysis, was considered as a PSD (Power Spectral Density) function, which was derived based on the measured data. The loads on the vibration-proof rail fastening system were evaluated considering various operating conditions in the urban railway. Regulation of the performance test load of the vibration-proof rail fastening system was established based on the evaluated loads.

An Application of Wheel-Tracking-Machine on Dynamic Test of Precast Concrete Decks (윤하중 시험기를 이용한 프리캐스트 바닥판의 동적성능시험)

  • Sung, Ik-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.644-650
    • /
    • 2010
  • In this paper, an experimental study is performed in order to determine the effects of interaction between vehicle and structure. For this purpose a wheel tracking machine and an adequate precast concrete deck single span bridge are designed. Results presented in the paper show that interaction between vehicle and structure produce additional effects on dynamic behavior of structure including reversal and contrary behavior.

A Study on Dynamic Test of Safety System Software on Nuclear Power Plant (원자력발전소 안전계통 소프트웨어의 동적시험에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hak;Lee, Sun-Sung;Suh, Young
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.213-223
    • /
    • 1999
  • In recently, the safety system software of the nuclear power plant has been verified and validated according to ANSI/IEEE-ANS-7-4.3.2-1982 to improve the reliability. This standard requires that safety-related software should be tested in the static and dynamic environments. In case of Inadequate Core Cooling Monitoring System (ICCMS), the static test procedure and related techniques are developed but the dynamic test procedure and related techniques are not developed. Therefore, this paper discusses the undeveloped techniques, and suggests the dynamic test procedure and the program for generation of test input data. The performance of the program was identified using accident analysis report of Ulchin 3&4 Final Safety Analysis Report (FSAR).

  • PDF

Evaluation of Seismic Performance on Shear Walls in Steel House (스틸하우스 전단벽체의 내진성능평가)

  • 이재석;이승은;홍건호;김원기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.65-72
    • /
    • 2002
  • This study estimates steel house shear wall's seismic performance depending on trend of seismic design. As a result at cyclic-test, the capability of energy dissipation about X1SPCH during this test is good enough. The capability of energy dissipation of X3SPCH and X4SPCH was better than that of X1SPCH. The X2SPCH which is similar to real X-braced shear wall has better seismic performance than shear wall braced with structural sheathing materials on pseudo-dynamic test.

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

Pseudo-Dynamic Test for the Bridges Retrofitted with Laminated Rubber Bearings (적층고무받침으로 내진보강된 교량의 유사동적실험)

  • Kwak, Im-Jong;Cho, Chang-Beck;Han, Kyoung-Bong;Kim, Young-Jin;Kwak, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.43-50
    • /
    • 2005
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. For the highway bridges of which bearings are worn and dysfunctional, the validity of seismic retrofit method using laminated rubber bearings was discussed in this study. Real scale RC pier specimens without seismic details were constructed. And then, Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to these specimens. Through pseudo dynamic test method, dynamic behavior of these RC piers under earthquake was simulated and compared. From the test results, proposed seismic retrofit method was found to be valid.

An Analysis for Optimization of Rubber Granule Layer in Synthetic Surfaced Track using Response Surface Methodology (반응표면법을 이용한 육상트랙용 고무칩층의 최적설계에 관한 연구)

  • Kang, Ki-Weon;Lee, Seung-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.787-794
    • /
    • 2010
  • This paper aims to evaluate the effect of each material ingredient on mechanical and dynamic performance and to determine an optimal mixing condition of a rubber granule layer. To minimize the required number of tests, the test matrix was established by using the design of experiments (DOE). The tensile tests were then performed to identify the mechanical properties. Also, to evaluate the dynamic performance that the IAAF has required for athletics tracks for athletes' safety and balance, a series of impact tests were performed by using the so-called the "artificial athlete" machine. Finally, the response surface methodology was used to decide the optimal mixing conditions needed to achieve a high level of mechanical properties and dynamic performance.