• Title/Summary/Keyword: 동적물

Search Result 1,680, Processing Time 0.041 seconds

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Study on ZnO Nanoparticle Dispersions in Test Media Including Natural Organic Matter for Ecotoxicological Assessment (천연유기물을 포함한 산화아연 나노입자 분산배지의 생태독성평가 적용성 연구)

  • Park, Sun-Young;Kim, Kyung-tae;Shin, Yu-jin;Kim, Ji-eun;Lee, Jae-woo;Jo, Eunhye;Sung, Hwa kyung;Kim, Pil-je;Choi, Kyung-hee;Eom, Ig-chun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.634-640
    • /
    • 2017
  • Toxicity and fate assessment is necessary in the evaluation of the environmental, health and safety risks of engineered nanomaaterials (ENMs). Therefore, in order to ensure the reproducibility, reliability and relevance of ENMs toxicity results, stable and monomodal dispersion protocols in toxicity test media are needed. Zinc oxide nanoparticles (nZnO) are widely used in various products such as cosmetic products, paper, paints etc. In this study, nZnO dispersions in ecotoxicity test media were produced by following a series of steps of modified National Institute of Standards and Technology (NIST) Special publication 1200-5. In addition, natural organic matter (humic acid (HA)) was used as a stabilizing agent to disperse nZnO in the test media. The hydrodynamic diameters (HDD) of the nZnO in dispersion ranged between 150 and 200 nm according to the dynamic light scattering (DLS) measurement. Based on these dispersions in ecotoxicity test using ecological species (Oryzias latipes, Daphnia magna, Pseudokirchneriella subcapitata and Chironomusus riparius), dispersion protocol was found to have a considerable potential in ecotoxicity test of ENMs.

A Study on the Transitional Aspects in Korean Gardens that Reflected of the Korean Folk Village 'Oeam-Ri' (외암리 민속마을에 나타난 한국정원의 전환기적 양상)

  • Lee, Won Ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.100-121
    • /
    • 2009
  • This study is subjected to those gardens of the Korean Folk Village 'Oeam-Ri' designed in 1920s. - transitional period of traditional gardens - and define socio-cultural change's influences and through documents on garden design, descendant's testimony and measured drawings, to understand that period's garden culture's characteristics according to garden design elements. This study applied following analysis methods and procedures to derive out characteristics of transitional garden culture. Analysis on socio-cultural characteristics in 1920s. Analysis on actual condition of transitional garden's design. In this point Outline of the Garden, Space formation, Garden designing elements are (1) water landscape, (2) plant, (3) structures, (4) paving, to derive out characteristics of the transitional garden. The results follow as below; First, during the transitional period 1920s, the economical development, fueled by opening nation's door to foreign countries and indication of collapse of statue systems together with idea of practical science and Enlightenment Thought, was element of changes in garden style. Second, Garden Designers of transitional gardens in 'Oeam-Ri' were limited to upper class of the society. They were wealthy enough to maintain their high social statue in rapidly changing society. As results, tendency of returning to nature developed gardens located in a site of scenic beauty and development of geographical features arranging techniques, and also showed copying foreign styles. Third, arrangement of garden and space composition, in most cases, composed of buildings and yards. Changes in water landscape features and garden spaces are centered to main-yard. Major changes of the garden spaces are water landscapes and plants that showing foreign influences. Fifth, scenic appearance techniques appears with dense garden space and emphasizing visual scenic view. Sixth, the characteristics of transitional garden design techniques are development of geographical feature arranging techniques, changes and mixture of the materials and garden types, emphasizing garden's decorative beauty, change of concept of yard within house into garden, changes from 'borrowing of landscapes' to 'selecting landscapes', changes of front garden from emptiness to fullness, changes of attitudes of enjoying gardens from 'staying calm in the garden' to 'moving or walking in the garden', changes to inner-oriented view, and changes from 'just watching and enjoying the nature' to 'enjoying specific objects'. This study is one of the efforts to restore the identity of Korean Traditional Garden by approaching and observing modern era which function as bridge between tradition and present day, and we observed transitional aspects of changes of traditional garden into modern garden. Hereafter, more studies will be needed to Modern Garden Design be recognized as part of Korean Garden Design History and these would be author's next assignment.

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.

Rheological properties of dental resin cements during polymerization (치과용 레진 시멘트의 유변학적 성질)

  • Lee, Jae-Rim;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.82-89
    • /
    • 2014
  • Purpose: The purpose of this study was to observe the change of viscoelastic properties of dental resin cements during polymerization. Materials and methods: Six commercially available resin cement materials (Clearfil SA luting, Panavia F 2.0, Zirconite, Variolink N, RelyX Unicem clicker, RelyX U200) were investigated in this study. A dynamic oscillation-time sweep test was performed with AR1500 stress controlled rheometer at $32^{\circ}C$. The changes in shear storage modulus (G'), shear loss modulus (G"), loss tangent (tan ${\delta}$) and displacement were measured for twenty minutes and repeated three times for each material. The data were analyzed using one-way ANOVA and Tukey's post hoc test (${\alpha}$=0.05). Results: After mixing, all materials demonstrated an increase in G' with time, reaching the plateau in the end. RelyX U200 demonstrated the highest G' value, while RelyX Unicem (clicker type) and Variolink N demonstrated the lowest G' value at the end of experimental time. Tan ${\delta}$was maintained at some level and reached the zero at the starting point where G' began to increase. The tan ${\delta}$and displacement of the tested materials showed similar pattern in the graph within change of time. The displacement of all 6 materials approached to zero within 6 minutes. Conclusion: Compared to other resin cements used in this study, RelyX U200 maintained plastic property for a longer period of time. When it completed the curing process, RelyX U200 had the highest stiffness. It is convenient for clinicians to cement multiple units of dental prostheses simultaneously.

Optimization of GFR value according to Kidney Depth Measurement Methods (신장 Depth 측정 방법에 따른 GFR 값의 최적화)

  • Kwon, Hyeong-Jin;Moon, Il-Sang;Noh, Gyeong Woon;Kang, Keon Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.25-28
    • /
    • 2019
  • Purpose In patients with unusual kidney position after $^{99m}Tc-DTPA$ renal dynamic imaging study, the GFR(Glomerular Filtration Rate) values are significantly different according to the depth of the kidney. Thus, we tried to compare the difference of the GFR values between the depth measurement methods and in-vitro test. 30 adult patients who were subjected to renal study. 27 patients were in usual position and 3 patients were in unusual. $555{\pm}37MBq$ of $^{99m}Tc-DTPA$ was administrated to all patients. GE infinia gamma camera was used. GFR values were obtained in-vivo(gates method) and in-vitro(blood). The kidney depth in-vivo was calculated by three methods(tonnensen, manual, taylor). In-vitro, GFR was performed by blood test. Differences in the mean values of GFR and correlation between depth and GFR values were evaluated using the SPSS 12.0 statistical program. The GFR values for 27 patients with kidney in the usual position are as follows(1.tonnensen 2.manual 3.taylor 4.invitro); $69.3{\pm}4.2$, $88.2{\pm}5.6$, $77.8{\pm}4.3$, $82.2{\pm}5.8ml/min$. The three unusual cases are as follows, first(congenital renal anomaly): 66.4, 101.24, 69.07, 94.8 ml/min. second(transplantation kidney): 12.22, 29.99, 19.36, 23.5 ml/min. third(horseshoe kidney): 37.37, 93.54, 35.9, 92.5 ml/min. There was a difference between tonnensen and manual in the usual position of the kidney(p<0.05). There was no significant difference between the other methods. However, there was a significant difference in case of the unusual position of the kidneys. Correlation analysis between both kidney depth and GFR value shows person correlation as follows; Rt kidney: 0.298, Lt kidney: 0.322. When compared with the GFR values in-vitro test, it was useful to calculate the GFR value by measuring the kidney depth using a manual formula in the unusual position of the kidneys. GFR values and kidney depth were significantly related.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Thermal Dynamics of Core and Periphery Temperature during Treadmill Sub-maximal Exercise and Intermittent Regional Body Cooling (트래드밀에서의 최대하 부하 운동과 간헐적 부위별 인체 냉각 시 심부와 말초 부위의 체온 변화)

  • Lee, Joo-Young;Koscheyev, Victor S.;Kim, Jung-Hyun;Warpeha, Joe M.
    • Journal of Korean Living Environment System
    • /
    • v.16 no.2
    • /
    • pp.89-100
    • /
    • 2009
  • The present study was designed to observe the thermal dynamics of core and skin temperatures during sub-maximal treadmill exercise; to investigate the effect of regional body cooling during short rest after the treadmill exercise on the thermal dynamics. Three conditions (No cooling, Head/Hand cooling, Leg cooling) were simulated in a climatic chamber at 24±1℃ and 50±5%RH. Subjects performed two bouts of treadmill exercise at a rate of 80%HRmax followed by rest. Body cooling with a hood, long gloves, and a blanket that circulated water set at 15℃ was assigned during two bouts of rest. The results showed that (1) rectal temperature (Tre) did not show significant difference between three conditions; (2) Skin temperatures had specific features, depending on body regions. In particular, the initial fall phenomena of skin temperatures at the onset of exercise were noteworthy in the chest, thigh, calf, and finger tip. Of these, the most significant initial fall was found in finger temperature (Tfing). (3) During the period of the initial fall in skin temperatures, Tre gradually increased. (4) The magnitude of the fall of Tfing at the onset of 2nd running was on average 4.8, 5.1 and 3.4℃ for Control, HH cooling, and Leg cooling, respectively (p<0.05). The initial drop of Tfing at the onset of running was maintained for an average of 8.1, 7.9 and 6.3 minutes for Control, HH cooling, and Leg cooling, with no significant differences. In conclusion, the initial fall phenomena at the onset of treadmill exercise reflected non-thermal factors, as opposed to internal thermal status. The magnitude of the initial fall in Tfing was affected by legs cooling. Therefore, the initial fall phenomenon should be considered when interpreting the thermal status of the shell during heavy works/exercises that assigned with intermittent regional body cooling.

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.