• Title/Summary/Keyword: 동적기하

Search Result 284, Processing Time 0.024 seconds

Exploring of the Possibility to Construct the Items for Computer-based Assessment in Mathematics : Focused on Fence Items in PISA2012 or 2015 within an Environment of Dynamic Geometric Software (컴퓨터기반수학평가(CBAM)의 문항 제작 가능성 탐색: 동적 기하소프트웨어 환경에서 PISA2012 또는 2015 울타리 문항을 중심으로)

  • Lee, Seo Bin;Kim, Sun Ho;Choi-Koh, Sang Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.20 no.3
    • /
    • pp.325-344
    • /
    • 2017
  • Since PISA2006, the computer based assessment in mathematics(CBAM) was introduced for the first times and at last PISA2015 used all items in CBAM for problem solving. In this study, we focused on which important properties were considered in constructing geometric 'fence items' used in PISA 2015 to find the future direction over our teacher education, especially for constructing 'computer based assessment items.' For the purpose of the study, we analyzed the fence items on three components such as dependency, invariant, and path found in dragging activities, within a computer environment using the dynamic Geometry Software, GSP. Also, for the future, we provided an open-ended problem related to the fence items, which we could use as the merit of computer-based environment.

  • PDF

A Study on the Dynamic Post-Buckling Behavior of the Plane Frame Structures Subjected to Circulatory Forces (Circulatory Force를 받는 평면(平面)뼈대 구조물(構造物)의 동적(動的) 후좌굴(後座屈) 거동(擧動)에 관한 연구(硏究))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.13-24
    • /
    • 1988
  • A geometrically nonlinear analysis procedure for plane frame structures in order to study the static and dynamic post-buckling behavior of these structures subjected to circulatory forces is presented. The elastic and geometric stiffness matrices, the mass matrix and load correction stiffness matrix are derived from the extended virtual work principle, where the tangent stiffness matrix becomes non-symmetric due to the effects of non-conservative circulatory forces. The dynamic analysis of plane frame structures subjected to circulatory forces in pre- and post-buckling ranges is carried out by integrating the equations of motion directly by the numerically stable Newmark method. Numerical results are presented in order to demonstrate the vality and accuracy of the proposed procedure.

  • PDF

A Study on a Nonlinear Cable Finite Element (非線形 케이블 有限要素에 관한 硏究)

  • 장승필;박정일
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.93-101
    • /
    • 1989
  • A geometrically nonlinear cable finite element is presented to use in the static or dynamic modeling of offshore and onshore structures such as guyed tower, tension leg platform or mooring buoy, submarine cable, cable-stayed bridge, suspension bridge, cable roof and so on. The cable finite element is derived directly from the compatibility equations and flexibility matrix of elastic catenary cable theory for the arbitary plane loading and geome try. A general and virsatile computer program has been developed to perform the analyses of cable member itself or cable guyed or suspened structures, in which Newmark-$\beta$ method is used to obtain a time domain solution and Newton-Raphson iteration method is used to solve the nonlinear system of compatibility equations of cable and algebraic static or dynamic equations at each time step. The results from the static and dynamic analysis of a cable member by the computer program are summarized and presented.

  • PDF

Cognitive Evaluation of Geometrical Structure on Express Highway with Driving Simulator (차량시뮬레이터를 이용한 고속도로 복합선형구간에서의 운전자 감성평가)

  • 이병주;박민수;이범수;남궁문
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.91-101
    • /
    • 2003
  • This study modeled 4-lane highway in three-dimensional virtual reality in order to overcome difficulties of field experiment. and the research subject was placed in a driving simulator. We survey the driver's cognitive characteristics to the alignment changes in the three-dimensional virtual reality highway. Especially, maximizing the identity of driving movements and virtual scenery on the basis of the data obtained by dynamic analysis module. we minimized simulator sickness for the graphic module of driving simulator. And we carried out cognitive evaluation on the basis of adjective words extracted by dictionary and the opinion of specialist. In this study LISREL model was used to detect the causal relation between geometry and safety in cognitive side, and found that geometric change affects the safety of drivers by static and dynamic road safety model in three-dimensional combined alignments. As the result, for constructing safety road. we consider drivers' cognitive characteristics as human factors in road design, and we think that they are very important factors to improve road safety.

Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test (진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성)

  • Park Byung-Ki;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.58-72
    • /
    • 2006
  • In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

Utility Evaluation on Application of Geometric Mean Depending on Depth of Kidney in Split Renal Function Test Using 99mTc-MAG3 (99mTc-MAG3를 이용한 상대적 신장 기능 평가 시 신장 깊이에 따른 기하평균 적용의 유용성 평가)

  • Lee, Eun-Byeul;Lee, Wang-Hui;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.199-208
    • /
    • 2016
  • $^{99}mTc-MAG_3$ Renal scan is a method that acquires dynamic renal scan image by using $^{99}mTc-MAG_3$ and dynamically visualizes process of radioactive agent being absorbed to kidney and excreted continuously. Once the test starts, ratio in both kidneys in 1~2.5 minutes was measured to obtain split renal function and split renal function can be expressed in ratio based on overall renal function. This study is based on compares split renal function obtained from data acquired from posterior detector, which is a conventional renal function test method, with split renal function acquired from the geometric mean of values obtained from anterior and posterior detectors, and studies utility of attenuation compensation depending on difference in geometric mean kidney depth. From July, 2015 to February 2016, 33 patients who undertook $^{99}mTc-MAG_3$ Renal scan(13 male, 20 female, average age of 44.66 with range of 5~70, average height of 160.40cm, average weight of 55.40kg) were selected as subjects. Depth of kidney was shown to be 65.82 mm at average for left and 71.62 mm at average for right. In supine position, 30 out of 33 patients showed higher ratio of deep-situated kidney and lower ratio of shallow-situated kidney. Such result is deemed to be due to correction by attenuation between deep-situated kidney and detector and in case where there is difference between the depth of both kidneys such as, lesions in or around kidney, spine malformation, and ectopic kidney, ratio of deep-situated kidney must be compensated for more accurate calculation of split renal function, when compared to the conventional test method (posterior detector counting).

A Multiple-Case Study of Preservice Secondary Mathematics Teachers' Teaching Demonstrations with Geometer's Sketchpad (예비 고등 수학교사들의 Geometer's Sketchpad 를 이용한 수업 시연에 관한 다중 사례 연구)

  • Kim, Somin
    • Journal of the Korean School Mathematics Society
    • /
    • v.20 no.3
    • /
    • pp.303-323
    • /
    • 2017
  • This is a multiple-case study of how preservice secondary mathematics teachers teach a particular mathematics using a technological tool. In a performance interview, the preservice teachers demonstrated how they would teach a specific mathematical topic using Geometer's Sketchpad. The results of this study showed that the preservice teachers designed diverse types of lesson plans and implemented different pedagogical and technological techniques in their teaching demonstrations. The findings suggest that preservice teachers' pedagogical content knowledge is an important factor in the integration of technology into their mathematics teaching. Thus, mathematics teacher educators should help preservice teachers gain a robust pedagogical content knowledge in order to effectively teach mathematics with technological tools.

  • PDF

Geometric Effects on Pressure Distribution on Mechanical Face seals (기계평면시일의 기하학적 형태가 압력분포에 미치는 영향에 관한 연구)

  • 김청균;이일권;서태석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1989.06b
    • /
    • pp.35-47
    • /
    • 1989
  • 누설방지를 목적으로 산업용 기계에서 많이 사용되고 있는 기계평면시일(mechanical face seal)은 기능상 높은 신뢰도를 요구하고 있다. 이를 위하여 동적 안정성이 커야되고, 밀봉된 유체의 누설을 최소화시킬 수 있는 정도에서 시일의 수명을 결정해야 한다. 이와같이 상반된 성질을 동시에 만족시키기 위하여 시일 성능에 영향을 미칠 수 있는 기하학적 요인들을 고려하여 해석해야 한다. 일반적으로 미끄럼 접촉운동을 하고 있는 시일에서 시일링 간극(sealing gap)이 수 micron 단위라는 점을 고려할때 시일 조립시 중심맞추기(alignnment) 정미\ulcorner 결여 및 회전축의 자중량 등에 의한 기계적 변형(mechanical distortion), 특히 고온의 분위기에서 작동되고 있는 시일의 열변형(thermal distortion)은 시일의 경사집에 커다란 영햐을 주고 있다. 또한 누설을 최소화시킬 목적으로 시일 링(seal ring) 을 시일의 경사짐에 커다란 영향을 주고 있는 스프링의 강성도를 증가시키면 상대 미끄럼 운동을 하고 있는 접촉명이 건조마찰에 의한 마멸이 진행되어 코닝(coning)현상이 생긴다. 시일 평면에서 코닝 현상은 시일의 축방향 분리력(axial separtating force)과 경사 모우면트(tilting moment)에 커다란 영향을 주고 있는 것으로 알여졌다. 이들의 연구는 주로 경사진 시일평판에 시일근사치이논(seal approximation bhoryl)을 이용하여 1차원 비압축성에 관한 시월 성능을 해석하였다. 본 연구에서는 비압축성 유체의 점성이 온도에 의하여 변화를 일으키는 조건하에서 경사진 회전시일에 코닝이 발생되었을때 시일링 각극에서의 압력분포를 ㅈ차원인 경우에 대하여 수치적으로 해석을 하였다.

  • PDF

Development of Nonlinear Dynamic Program for Buckling Analysis of Plane Circular Arches (평면 원호아치의 좌굴해석을 위한 동적 비선형해석 프로그램의 개발)

  • 허택녕;오순택
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.69-81
    • /
    • 1994
  • This paper summarizes a dynamic analysis of the shallow circular arches under dynamic loading, considering the geometric nonlinearity. The major emphasis is placed on the development of computer program, which is utilized for the analysis of the nonlinear dynamic behavior and for the evaluation of the critical buckling loads of the shallow circular arches. Geometric nonlinearity is modeled using Lagrangian description of the motion and a finite element analysis procedure is used to solve the dynamic equation of motion. A circular arch subject to normal step load is analyzed and the results are compared with those from other researches to verify the developed program. The critical buckling loads of arches are estimated using the non-dimensional time, load and shape parameters and the results are also compared with those from the linear analysis. It is found that geometric nonlinearity plays and important role in the analysis of shallow arches and the probability of buckling failure is getting higher as arches become shallower.

  • PDF

Nonlinear Dynamic Behaviors of Laminated Composite Structures Containing Central Cutouts (중앙개구부를 갖는 복합신소재 적층 구조의 비선형 동적 거동)

  • Ji, Hyo-Seon;Lee, Sang-Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.607-614
    • /
    • 2011
  • This study deals with thegeometrical nonlinear dynamic behavior of laminated plates made of advanced composite materials (ACMs), which contain central cutouts. Based on the first-order shear deformation plate theory (FSDT), the Newmark method and Newton-Raphson iteration wereused for the nonlinear dynamic solution. The effects of the cutout sizes and lay-up sequences on the nonlinear dynamic response for various parameters werestudied using a nonlinear dynamic finite element program that was developed for this study. The several numerical results agreed well with those reported by other investigators for square composite plates with or without central cutouts, and the new results reported in this paper showed significant interactions between the cutout and the layup sequence in the laminate. Key observation points are discussed and a brief design guide for laminates with central cutouts is given.