• Title/Summary/Keyword: 동위치 제어

Search Result 9, Processing Time 0.022 seconds

Dynamic Positionning Control of Floating Platform Using H$_{\infty}$ Control Method (H$_{\infty}$제어법을 이용한 부유식 플랫폼의 동위치 제어)

  • 유휘룡;김성민;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.437-442
    • /
    • 1996
  • The paper presents a design method of dynamic positioning control system for floating platform with rotatable and retractable thruster using $H_{\infty}$control technique. The norm band of uncertaintyis captured by multiplicative perturbation between nominalmodel and reduced order model. A controller robust to theuncertainty is designed applying $H_{\infty}$synthesis. The control law satisfying robust stability and nominal performance condition is determined through the mixed sensitivity approach. The evaluation for the resultant controller obtained by $H_{\infty}$synthesis is done through simulations of the closed loop system. The results of $H_{\infty}$synthesis are compared to those of the traditional LQ synthesis method. method.

  • PDF

Dynamic Positioning Control System for Gas & Oil Exploration Platforms Using H$\infty$ Control (H$\infty$ 제어를 이용한 가스 및 석유 탐사용 플랫폼의 동위치 제어)

  • Yoo Hui Ryong;Rho Yong Woo;Park Dae Jin;Koo Sung Ja;Park Seoung Soo;Kim Sang Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.62-69
    • /
    • 1999
  • This paper presents a design method of dynamic positioning control system(DPS) for floating Platform with rotatable and retractable thrusters using H$\infty$ servo control design method. The norm band of uncertainty is captured by multiplicative perturbation between nominal model and reduced order model. A controller robust to the uncertainty is designed applying H$\infty$ synthesis. The control law satisfying robust stability and nominal performance condition is determined through the mixed sensitivity approach. The control algorithm was evaluated on the basis of computer simulation for a proposed DPS design method and experiments was carried out with an image processing method for measurement of DPS position in a water tank The results of overall experiments show that proposed control method will be good to keep at a specified position. And they are compared with the experimental results by LQG synthesis and H$\infty$ optimal control design method.

  • PDF

Dynamic Positioning Control of Floating Platform using $H_{\infty}$ Control Method ($H_{\infty}$ 제어법을 이용한 부유식 플랫폼의 동위치 제어)

  • 유휘룡;김환성;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.153-161
    • /
    • 1996
  • This paper presents a design method of dynamic positioning control system for floating platform with rotatable and retractable thruster using $H_{\infty}$ control technique. The norm band of uncertainty is captured by multiplicative perturbation between nominal model and reduced order model. A controller robust to the uncertainty is designed applying $H_{\infty}$ synthesis. The control law satisfying robust stabillity and nominal performance condition is determined through the mixed sensitivity approach. The evaluation for the resultant controller obtained by $H_{\infty}$ synthesis is done through simulations of the closed loop system. The results of $H_{\infty}$ synthesis are compared to those of the traditional LQ synthesis method.

  • PDF

Experimental Study on Dynamic Positioning Contol of a Semi-Submergible Platform (반잠수식 해양구조물의 동위치제어에 관한 실험적 연구)

  • 김성근;유휘룡;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.661-669
    • /
    • 1995
  • This paper presents a design method of dynamic positioning control system in view ofpractical design concept for reliability and robust realization. This method adopts a design method of multivariable robust servo system. The practical experiments of the dynamic positioning control were carried out for a semi-submersible 2-lower hull type platform model with 4 rotatable thrusters in a small water tank. The results fo overall experiment show that the proposed position control method will be an efficient method to the better control performance of dynamic positioning system under serere environment and it is substentially practicable for the platform.

Simultaneous Optimum Design of Structural and Control Systems for Truss Structure with Collocated Sensors and Actuators (센서/액츄에이터 콜로케이션을 이용한 트러스 구조물에 대한 구조계와 제어계의 동시 최적설계)

  • Tada, Yukio;Park, Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.133-138
    • /
    • 1999
  • 3차원 트러스 구조물을 설계대상으로, 구조계와 제어계의 동시최적설계문제에 대하여 고찰하였다. 구조 설계에대한 최소중량설계와 제어 설계에대한 외란 억제문제를 설계목적으로 고려하였다. 그리고, 본연구의 유용성을 입증하기위한 수치 시뮬레이션의 결과를 기술하였다.

  • PDF

Active Vibration Control of Shell Structure Subjected to Internal Unbalanced Excitation (내부 불평형 기진력을 갖는 원통형 구조물의 능동진동제어)

  • Kim, Seung-Ki;Jung, Woo-Jin;Bae, Soo-Ryong;Lee, Sang-Kyu;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.195-203
    • /
    • 2017
  • This paper is concerned with the active vibration control of shell structure that is subjected to internal unbalanced excitation by using active mounts and accelerometers. The unbalanced excitation is caused by a rotating unbalanced mass. The control algorithm considered in this study is the negative acceleration feedback (NAF) control. A simplified dynamic model was derived to verify the effectiveness of the NAF control. Four actuators and four accelerometers were mounted on the shell structure, so that the multiple-input and multiple-output (MIMO) NAF controller was designed by both centralized and decentralized ways. Numerical results show that both the decentralized and centralized NAF controllers are effective. Based on the numerical simulation, the proposed decentralized NAF controller was applied to the real shell structure. Experimental results show that the proposed decentralized NAF controller can effectively suppress vibrations of the shell structure.

A Study for Dynamic Positioning Control of Floating Platform(I)- Numerical Simyulation by a Servo System Design Method - (부유식 구조물의 동위치제어에 관한 연구( I )-서보계 구성법에 의한 수치시물레이션-)

  • 김성근;유휘룡;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.79-90
    • /
    • 1993
  • A design method of DPS control algorithm for adpting rotable thruster is introduced by applying servo system design method and the control algorithm is evaluated on the basis of the results of computer simulations performed for a semi-submersible 2-lower hull 8-column type platform. It is observed from the simulation results that position error due to the irregular drifting forces becomes zero after very short regulating time and dynamic positioning system is robust in spite of random disturbance.

  • PDF