• Title/Summary/Keyword: 동역학 모델링

Search Result 257, Processing Time 0.031 seconds

Curl-based efficient constraint model for wet curly hair (젖은 곱슬머리를 표현하기 위한 컬 기반의 효율적인 제약 모델)

  • An, Jang Hoon;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.567-568
    • /
    • 2022
  • 헤어 시뮬레이션은 수많은 가닥으로 구성되어 있으며, 헤어 동역학을 기반으로 계산되기 때문에 일반적으로 계산양이 큰 범주에 속한다. 뿐만 아니라 곱슬머리 형태를 유지하려는 제약은 더 큰 계산을 요구하며, 본 논문에서는 수분에 의해 곱슬머리가 젖었을 때 표현되는 구부러짐과 수축을 모델링 할 수 있는 새로운 알고리즘을 제시한다. 이전 연구에서는 곱슬머리에 대한 헤어 시뮬레이션은 곱슬머리의 회전(Curl)형태를 유지하려는 알고리즘을 제안했지만, 강한 외력에 의한 회전형태만을 유지하려고 했으며, 수분이나 열에 의한 곱슬머리의 상태변화는 고려하지 못했다. 따라서 본 논문에서는 IIR(Infinite impulse response) 필터로 스무딩된 헤어 커브를 따라 회전의 수직 성분을 추출하여 회전의 세로방향 신축성을 제어할 수 있는 방법을 제안한다. 우리의 헤어 모델은 곱슬머리의 회전과 신축성을 제어하기 위해 스프링 동역학을 사용하며, 젖은 헤어의 부분적인 상태 변화에도 안정적으로 표현할 수 있음을 보여준다.

  • PDF

Structural Dynamics Analyses of a 5MW Floating Offshore Wind-Turbine Using Equivalent Modeling Technique (등가모델링기법을 이용한 5MW급 부유식 해상용 풍력발전기 구조동역학해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Kim, Dong-Hwan;Kim, Bong-Yung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.614-622
    • /
    • 2011
  • In this study, the computational structural dynamic modeling of floating offshore wind turbine system is presented using efficient equivalent modeling technique. Structural dynamic behaviors of the offshore floating platform with 5MW wind turbine system have been analyzed using computational multi-body dynamics based on the finite element method. The considered platform configuration of the present offshore wind turbine model is the typical spar-buoy type. Equivalent stiffness and damping properties of the floating platform were extracted from the results of the baseline model. Dynamic responses for the floating wind turbine models are presented and compared to investigate its structural dynamic characteristics. It is important shown that the results of the present equivalent modeling technique show good and reasonable agreements with those by the fully coupled analysis considering complex floating body dynamics.

  • PDF

Study on the Dynamic Modeling of MCCB (배선용 차단기 개폐기구의 동특성 향상방안 및 해석)

  • Park, Jin-Young;Cho, Hea-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.315-320
    • /
    • 2012
  • Generally circuit devices of low voltage are as follows, ICCB, PCB and MCCB. Among them, MCCB is typically used because it has superior characteristics which fuses do not possess, such as safety, controllability and ability to collaborate with other devices. The MCCB plays vital role, it has to trip instantaneously when the fault is occurred as well as it must have high insulation capacity. Therefore in order to enhance the breaking capacity, the study of contact construction, contact tip and link are necessary. This paper shows dynamic modeling of mechanism part of MCCB using an exclusive analysis program, and embodies the research of improvement of mechanism performance.

Analysis of Dynamic Behavior of Floating Offshore Wind Turbine System (해상 부유식 풍력 타워의 동적거동해석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this study, the dynamic modeling of floating offshore wind turbine system is reported and the dynamic behavior of the platform for the offshore wind turbine system is analyzed. The modeling of the wind load for a floating offshore wind turbine tower is based on the vertical profile of wind speed. The relative Morison equation is employed to obtain the wave load. ADAMS is used to carry out the dynamic analysis of the floating system that should withstand waves and the wind load. Computer simulations for four types of tension leg platforms are performed, and the simulation results for the platforms are compared with each other.

Analysis for the Driving Dynamic Characteristics of Large Scale Semi-Trailer Equipped with Swivel Axle and Hydropneumatic Suspension Unit (회전 차축 및 유기압 현가장치를 장착한 대용량 세미 트레일러의 주행 동특성 해석)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.196-209
    • /
    • 2022
  • Driving dynamic characteristics of semi-trailer loaded with precise equipments are very important to protect them from vibration, impact or other disturbances. In this paper, in order to identify the driving dynamic characteristics of the large scale semi-trailer equipped with swivel axle and hydropneumatic suspension unit, Dynamics Modeling & Simulation(M&S) were performed using general Dynamics Analysis Program(RecurDyn V9R2). The semi-trailer was modeled as two types - one is Multi Rigid Body Dynamics(MRBD) model, and the other Rigid-Flexible Body Dynamics(RFlex) one. The natural vibration mode and frequencies of semi-trailer body, acceleration of dummy-weight, pitch, roll and yaw of dummy-weight, swivel axle and hydropneumatic suspension cylinder support structure, and acting force of hydropneumatic suspensions etc. were obtained from the M&S. Additionally frequency analysis were performed using the data of behavior obtained from above M&S. Generally the quantitative results of RFlex are larger than them of MRBD in view of magnitude of the comparable parametric values.

Driving Dynamic Characteristics of Tractor-Trailer Type Transporter for Large Scale Precision Equipment (대형 정밀장비 탑재용 트랙터-트레일러형 차량의 주행 동특성)

  • Ha, Taewan;Oh, Sanghoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.687-696
    • /
    • 2019
  • To identify the driving dynamic characteristics of the Tractor-Trailer Type Transporter for mounting a large scale precision equipment, real vehicle driving tests on the 3 inch-bump-space-road were performed. And using general Dynamics Analysis Program - RecurDyn(V8R5), Dynamics M&S were carried out assuming the similar condition with real tests. Then the acceleration data obtained from real tests and M&S were analyzed and compared with each other in the part of root-mean-square-acceleration($g_{rms}$), peak-acceleration($g_{peak}$) and frequencies. In simple view of the $g_{rms}$ & $g_{peak}$, although the results of MRBD are more similar to ones of the real vehicle driving tests, but the results of RFlex have more information to get various useful dynamic characteristics.

Real-Time Dynamic Analysis of Vehicle with Experimental Vehicle Model (실험기반 차량모델을 이용한 실시간 차량동역학 해석)

  • Yoo, Wan-Suk;Na, Sang-Do;Kim, Kwang-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1003-1008
    • /
    • 2012
  • The paper presents an Experimental Vehicle Model (EVM), that utilizes the kinematic characteristics of suspensions from SPMD test data. The relative displacement and orientation of a wheel with respect to the body are represented as a function of the vertical displacement of the wheel. The equations of motion of the vehicle are formulated in terms of local coordinates that do not require coordinate transformation, which improves the efficiency of dynamic analysis. The EOM was modularized for each suspension model, and a $6{\times}6$ vehicle model was obtained by combining six suspensions. The analysis results were compared with ADAMS to verify the accuracy of the EVM. This study also verifies the feasibility of real-time simulation with the developed EVM. For a vehicle simulation for 1 ms, the real simulation time required within 20% of the prescribed time. This result shows that the EVM meets the real-time simulation requirements.