• Title/Summary/Keyword: 동역학모델

Search Result 367, Processing Time 0.03 seconds

Dynamic Analysis of a Washing Machine Using a Multi-body Dynamic Model (다물체 동역학 모델을 이용한 세탁기의 동적 해석)

  • Kim, Tae-Jin;Kim, Byung-Jin;Kim, Seung-Oh;Min, Je-Hong;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.88-93
    • /
    • 2012
  • In this study, a multi-body dynamic model is developed for a washing machine and the dynamic behaviors of the machine are investigated. The mechanical properties such as spring constants and damping factors are measured from vibrational experiments. With these experimentally obtained mechanical properties, a computer simulation model for the washing machine is established by using a commercial multi-body dynamics software DAFUL. In order to verify the developed simulation model, the dynamic responses computed from simulation are compared to the responses measured from vibration experiments. In addition, the effects of the stiffness and damping factors on the dynamic responses are also analyzed.

Bending Spring Model for Stable Strain-Based Dynamics in Triangular Meshes (삼각형 메쉬에서 안정적인 변형률 기반 동역학을 위한 굽힘 스프링 모델)

  • Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.341-344
    • /
    • 2022
  • 본 논문에서는 삼각형 메쉬 기반에서 변형률 기반 동역학(Strain-based dynamics, SBD)을 안정적으로 표현할 수 있는 굽힘 스프링 구조와 감쇠 기법에 대해 설명한다. SBD는 삼각형 메쉬의 에지 길이(Edge length) 기반의 에너지 대신 변형률(Strain)을 활용하여 에너지를 모델링한다. 하지만, 비정상적인 삼각형(Degenerate triangle)인 경우 변형률이 불안정하게 계산되어 잘못된 방향으로 늘어나는 문제가 발생한다. 본 논문에서는 이러한 문제를 효율적으로 처리할 수 있는 굽힘 스프링(Bending spring) 구조에 대해 소개한다. 결과적으로 본 논문에서 제안하는 기법은 안정적으로 SBD를 처리할 수 있기 때문에 다양한 재질의 옷감 시뮬레이션을 안정적으로 표현할 수 있도록 한다.

  • PDF

Dynamic Model Prediction and Validation for Free-Piston Stirling Engines Considering Nonlinear Load Damping (자유피스톤 스털링 엔진의 비선형 부하 감쇠를 고려한 동역학 모델 예측 및 검증)

  • Sim, Kyuho;Kim, Dong-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.985-993
    • /
    • 2015
  • Free-piston Stirling engines (FPSEs) have attracted much attention in the renewable energy field as a key device in the conversion from thermal to mechanical energy, and in the recycling of waste energy. Traditional Stirling engines consist of two pistons that are connected by a mechanical link, while FPSEs are formed as a vibration system by connecting each piston to a spring without a physical link. To ensure the correct design and control of operations, this requires elaborate dynamic-performance predictions. In this paper, we present the performance-prediction methodology using a linear and nonlinear dynamic analytical model considering the external load of FPSEs. We perform linear analyses to predict the operating point of the engine using the root locus technique. Using nonlinear analysis, we also predict the amplitude of pistons by performing numerical integration considering both the linear and nonlinear damping terms of the external load. We utilize the predicted dynamic behavior to predict the engine performance. In addition, we compare the experiment results and existing model predictions for RE-1000 to verify the reliability of the analytical model.

Simplified Model of Wheel Type Dog-Horse Robot to Reduce Dynamic Analysis Time (차륜형 견마 로봇의 동역학 해석시간 단축을 위한 단순화 모델)

  • Kim, Young Jin;Jung, Samuel;Kim, Tae Yun;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.157-165
    • /
    • 2016
  • In wartime conditionsmilitary combat vehicles are required to be driven on rough roads that have significant obstacles. A wheel type dog-horse robot with a rotary suspension system was applied to overcome the obstacles. To achieve real-time analysis, a simplified model was proposed by using velocity transformations. Through comparison with the multi-body dynamics model, the efficiency and accuracy of the proposed modeling was proven.

A History of Investigations of Population Dynamics and Epidemiology (집단 및 질병 동역학에 대한 역사발생적 고찰)

  • Lee, Weon Jae;Han, Gil Jun
    • Journal for History of Mathematics
    • /
    • v.26 no.2_3
    • /
    • pp.197-210
    • /
    • 2013
  • The late 18C Malthus studied population growth for the first time, Verhulst the logistic model in 19C and, after that, the study of the predation competition between two species resulted in the appearance of Lotka-Volterra model and modified model supported by Gause's experiment with bacteria. Instable coexistence equilibrium being found, Solomon and Holling proposed functional and numerical response considering limited abilities of predator on prey, which applied to Lotka Volterra model. Nicholson and Baily, considering the predation between host and parasitoid in discrete time, made a model. In 20C there were developed various models of disease dynamics with the help of mathematics and real data and named SIS, SIR or SEIR on the basis of dynamical phenomena.

Lumped Track Modeling for Estimating Traction Force of Vecna BEAR Type Robot (Vecna BEAR 형 로봇의 견인력 추정을 위한 Lumped 궤도 모델링)

  • Kim, Tae Yun;Jung, Samuel;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.275-282
    • /
    • 2015
  • Recently, Vecna BEAR type robot to save injured individuals from inaccessible areas has been developed to minimize the loss of life. Because this robot is driven on rough terrain, there is a risk of rollover and vibration, which could impact the injured. In order to guarantee its stability, an algorithm is required that can estimate the speed limits for various environments in real time. Therefore, a dynamic model for real-time analysis is needed for this algorithm. Because the tracks used as the driving component of Vecna BEAR type robot consist of many parts, it is impossible to analyze the multibody tracks in real time. Thus, a lumped track model that satisfies the requirements of a short computation time and adequate accuracy is required. This study performed lumped track modeling, and the traction force was verified using RecurDyn, which is a dynamic commercial program.

Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model (동역학 모델을 활용한 서비스용 지능형 로봇의 현가 시스템 설계 및 최적화)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Jung, Sung-Pil;Jun, Kab-Jin;Yun, Ji-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1023-1028
    • /
    • 2010
  • Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components.