• Title/Summary/Keyword: 동역학모델

Search Result 367, Processing Time 0.024 seconds

Fatigue Analysis of Rear Suspension Part Applying Multi-body Dynamics (다물체 동역학을 이용한 후륜 현가 부품의 내구해석)

  • Jeon, Seong Min;Cho, Byung-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1039-1044
    • /
    • 2015
  • During the development of vehicles, durability tests are time consuming and costly. Recently, automobile companies have attempted to develop their own durability evaluation procedures by modifying and complementing . In this paper, we propose an integrated computer-aided engineering (CAE) method to evaluate the durability of a torsion beam axle (TBA). We compare this method with the standardized durability evaluation method used by an actual automobile company in order to determine the feasibility of this method. We compare the results with the test result data to enable us to estimate the reliability of the analysis results. In this study, we analyze the processes and results of the quasi-static fatigue analysis, and found improved methods and problems. Furthermore, we perform a thorough test using the requirements of the actual company. Based on the results, the structural analysis process in the quasi-static fatigue analysis method was superseded by the multi-body dynamics analysis process. Generally, this method is referred to as the resonance-fatigue analysis method.

A Wheel Wear Analysis of Railway Vehicle on a Curved Section (곡선 구간에서 철도 차량 휠의 마모 특성 해석)

  • Kang, Juseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.547-555
    • /
    • 2016
  • The wheel wear of a railway vehicle is mainly generated when maneuvering on a curved track. The change in the wheel profile affects the dynamic stability of the vehicle. In this analysis, the wheel wear volume was calculated while changing the velocity and radius of the curve to analyze the wear characteristics of a wheel at a curved section. The wear index was calculated from a vehicle dynamic analysis based on a multibody dynamics analysis and wear volume from a wear model by British Rail Research. The wear volume at a radius of 300 m is dominant compared with other radii. The wear volume was calculated by assigning different coefficients of friction to the tread and flange of the wheel to investigate the effect of lubrication on the wear characteristics. The effect of the improvement by lubrication is calculated by varying the radius of the track, and is assessed on an actual urban railway section.

Dynamic Analysis of Wave Energy Generation System by Using Multibody Dynamics (다물체 동역학을 이용한 파력발전기의 동적거동 분석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1579-1584
    • /
    • 2011
  • This paper discusses an energy system that can convert wave energy into electrical energy. This wave energy generation system is movable and has 12 arms and one generator. A multibody dynamic model for this system is established by using kinematic constraints. A gear mechanism, several kinematic constraints, and force elements are included in the model. Wave forces are obtained numerically from the time domain formulation based on the Morison equation. The MSC/ADAMS program is employed to carry out dynamic analysis of the wave energy generation system. The dynamic behavior responses of this system are analyzed for design verification. According to the results of the dynamic analysis, the yaw motion is relatively stable and kinetic energy sufficient to generate electrical energy is obtained when the wave height exceeds 1m.

A Simulation Model of the ACL Function Using MADYMO (마디모를 이용한 전방십자인대 기능 시뮬레이션 모델)

  • Park, Jung-Hong;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1408-1416
    • /
    • 2006
  • A mathematical knee model was constructed using MADYMO. The purpose of this study is to present a more realistic model of the human knee to reproduce human knee motion. Knee ligaments were modeled as line elements and the surrounding muscles were considered as passive restraint elements. A calf-free-drop test was performed to validate the suggested model. A calf was dropped from the rest at about 65 degree flexed posture in the prone position. The motion data were recorded using four video cameras and then three dimensional data were acquired by Kwon3D motion analysis software. The results showed that general shapes of angular quantities were similar in both the experiment and computer simulation. Functional stability of the anterior cruciate ligament was explicitly revealed through this model.

Mechanical Analysis of heart muscle using a computational model of cardiac myocyte (심근세포 모델을 이용한 심장근육의 역학적 분석)

  • 심은보;김헌영;임채헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1176-1179
    • /
    • 2004
  • A new cell-cross bridge mechanics model is proposed to analyze the mechanics of heart muscle. Electrophysiology of a cardiac cell is numerically approximated using the previous model of human ventricular myocyte. Ion transports across cell membrane initiated by action potential induce excitation-contraction mechanism in the cell via cross bridge dynamics. Negroni and Lascano model (NL model) is employed to compute the tension of cross bridge closely related to ion dynamics in cytoplasm.

  • PDF

Dynamic Modeling and Analysis of a Friction Damper in Drum-type Washing Machine with a Magic Formula Model (Magic Formula 모델을 이용한 드럼세탁기용 마찰댐퍼의 동역학적 모델링과 해석)

  • Park, Jin-Hong;Lee, Jeong-Han;Yoo, Wan-Suk;Nho, Gyung-Hun;Chung, Bo-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1034-1042
    • /
    • 2009
  • In this paper, the magic formula model was applied for a friction damper in a drum-type washing machine. To describe characteristics of the hysteretic damping force, Physical tests were first carried out to get experimental results using an MTS machine. Then, parameters for the magic formula model were determined from the experimental curves. The ADAMS and MATLAB programs were used for the multibody modeling of the damper and process for parameter identification. The model of drum-type washing machine was applied for a dynamic model of friction damper, in which the accuracy of the proposed damper model was verified.

Nonlinear Dynamics of AFM Tip with Different Contact Models (접촉모델에 따른 AFM 팀의 배선형 동역학 비교)

  • 홍상혁;이수일;이장무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.73-76
    • /
    • 2004
  • Tapping mode atomic force microscopy (TM-AFM) utilizes the dynamic response of a resonating probe tip as it approaches and retracts from a sample to measure the topography and material properties of a nanostructure. We present recent results based on numerical techniques that yield new perspectives and insight into AFM. It is compared that the dynamic models including van der Waals and Derjaguin-Muller-Toporov(DMT) or Johnson-Kendall-Roberts(JKR) contact forces demonstrates that periodic solutions can be represented with respect to the approach distance and excitation frequency.

  • PDF

Development of Uni-Axial Bushing Model for the Vehicle Dynamic Analysis Using the Bouc-Wen Hysteretic Model (Bouc-Wen 모델을 이용한 차량동역학 해석용 1축 부싱모델의 개발)

  • Ok, Jin-Kyu;Yoo, Wan-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.158-165
    • /
    • 2006
  • In this paper, a new uni-axial bushing model for vehicle dynamics analysis is proposed. Bushing components of a vehicle suspension system are tested to capture the nonlinear and hysteric behavior of the typical rubber bushing elements using the MTS machine. The results of the tests are used to develop the Bouc-Wen bushing model. The Bouc-Wen model is employed to represent the hysteretic characteristics of the bushing. ADAMS program is used for the identification process and VisualDOC program is also used to find the optimal coefficients of the model. Genetic algorithm is employed to carry out the optimal design. A numerical example is suggested to verify the performance of the proposed model.

Vibration Analysis of the Pipeline with Internal Unsteady Fluid Flow by Using Spectral Element Method (스펙트럴요소법을 이용한 내부 비정상류를 갖는 파이프에 대한 진동해석)

  • Seo, Bo-Sung;Cho, Joo-Yong;Lee, U-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.387-393
    • /
    • 2006
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid flow. The spectral element matrix is formulated by using the exact frequency-domain solutions of the pipe-dynamics equations. The spectral element dynamic analysis is then conducted to evaluate the accuracy of the present spectral element model and to investigate the vibration characteristics and internal fluid characteristics of an example pipeline system.

Articulated Body Editing System (다관절체 오브젝트 편집시스템)

  • 최혜욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.23-32
    • /
    • 1997
  • 사실감 있는 모델의 생성과 동작제어 기술은 컴퓨터 그래픽스와 가상 현실감 등의 다양한 응용 분야에서 이용되고 있다. 컴퓨터 애니메이션에 동작 제어의 대상이 되는 물체는 다관절체(articulated body)이며, 이 다관절체를 뼈대(link)와 관절(joint) 그리고 이를 둘러싸고 있는 피부로 모델링하고, 운동학(Kinematics), 동역학(Dynamics)를 적용하여 동작을 생성한다. 본 논문은 컴퓨터 애니메이션에서 사용할 수 있는 3차원 다관절체의 생성과 애니메이션을 위한 다관절체 오브젝트 편집 시스템에 관한 것이다. 다관절체를 관리하기 위한 다관절체의 데이터 구조를 설계하고, 사용자 인터페이스를 추가하여 대화식으로 다관절체의 골격을 정의한다. 정의된 다관절체의 골격과 물체의 모양을 나타내는 기하 데이터를 접합하여 애니메이션에 적합한 물체를 모델링하기 위한 스킨-스켈레턴 알고리즘을 제안한다. 모델링된 물체의 관절을 조작하여 키프레임 애니메이션으로 동작을 제어한다. SGI 워크스테이션에서 Open Inventor와 X/Motif를 이용하여 C++ 언어로 구현하였으며, 인체 모델을 대상으로 실험하였다.

  • PDF