• Title/Summary/Keyword: 동손

Search Result 46, Processing Time 0.02 seconds

Harmonic Analysis of Power Conversion System for Torque and Speed Changing of Electric Propulsion Ship (전기추진선박의 토크 및 속도변화에 따른 전력변환장치의 고조파 분석)

  • Kim, Jong-Su;Kim, Seong-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • There are various environmental conditions under which ship may navigate over ocean or in harbor. Ship's torque and speed change frequently under the voyage conditions. In this case, harmonics is created in the electrical power systems. The major adverse impacts of voltage and current harmonics in the electrical power systems on generator, transformer, converter, inverter and propulsion motor lead to the increase of machine heating caused by iron and copper losses which are dependent on frequency. In this paper, an analysis of THD(total harmonic distortion) for currents and voltages in the propulsion equipment was carried out. The THD and torque ripple in the input currents of the propulsion motor have been confirmed by the simulation results.

Efficiency Optimization Control of IPMSM using Neural Network (신경회로망을 이용한 IPMSM의 효율 최적화 제어)

  • Chol, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.40-49
    • /
    • 2008
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications and so of due to their excellent power to weight ratio. To obtain maximum efficiency in these applications, this paper proposes the neural network control method. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the error back propagation algorithm(EBPA) of neural network. The minimization of loss is possible to realize eHciency optimization control for the IPMSM drive. This paper proposes high performance and robust control through a real time calculation of parameter variation such as variation of back emf constant, armature resistance and d-axis inductance about the motor operation. Proposed algorithm is applied IPMSM drive system, prove validity through analysis operating characteristics con011ed by efficiency optimization control.

Efficiency Optimization Control of SynRM Drive using Multi-AFLC (다중 AFLC를 이용한 SynRM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jang, Mi-Geum;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.44-54
    • /
    • 2010
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using multi adaptive fuzzy learning controller(AFLC). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

A Study on the Dimension Design of Ferrite Magnet DC Motor (페라이드 자석 직류전동기의 치수 설계에 관한 연구)

  • 김덕근;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.155-165
    • /
    • 1989
  • In this paper, design equations for the calculation of the dimensions and characteristics of the ferrite magnet DC motor are derived. Through the computer iterative calculation applying the parameter survey method with those equations, the design method is presented. The following facts and the propriety of the design method are identified by comparing with the computer simulation results and dimension elements for the proposed motor. (1) The dimension ratio and the pole arc ratio as simulation parameters are in close connection with the dimension elements and motor performance, and those values of the parameter are important factor in determining the reasonable dimension of the motor. (2) It is proved that the minimization of the ferrite magnet volume is possible by representing the permeance coefficient as a function of the flux density ratio only. (3) It is shown that the torque equation suggested by introducing the copper loss area density of the conductors located in the slot is available in the determination of motor dimensions.

Analysis of Pole Ratio Effect of Magnetic Reducer (마그네틱 감속기의 극수비 영향 분석)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2020
  • In a concentric magnetic gear, which replaces the teeth of a mechanical gear with a permanent magnet, the polar ratio of the magnet that determines the reduction ratio affects the behavior of the magnetic gear dramatically. This study analyzed the density of transmission torque, the efficiency of torque considering the solid loss, and the torque quality, including the cogging characteristics using finite element analysis. When the pole number on the driving side was changed from two to five, it was confirmed that there was an optimal pole ratio, in which the transmission torque was maximized. Because eddy current generation density is proportional to the magnetic field, the transmission efficiency also shows a similar tendency to the transmission torque density, and the efficiency is more than 95% at a low gear ratio. The cogging characteristics due to the interaction of the permanent magnets with the limited number of poles are inversely proportional to the least common multiple between the number of magnets on the drive side and the number of modulator teeth. A test model was built for the transmission torque evaluation.

Optimal Design of a Coil for Improved Heating Efficiency of Electric Induction Boiler (전기유도보일러의 발열효율개선을 위한 권선최적설계)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.476-482
    • /
    • 2019
  • Regulatory protocols such as the Convention on Climate Change and the regulation of greenhouse gas emissions act as catalysts for the development of high-efficiency energy equipment and the efficient use of energy. Among the fields where energy consumption is high, the electric heating equipment is not efficient. The electric boiler mainly uses a method of circulating water by contacting the heater. When the existing electric boiler is used, the water minerals are contacted with the high-temperature heater to be carbonized and adsorbed, thereby promoting the corrosion of the heater and lowering the efficiency of the heater. For this reason, an electric induction boiler, which has high energy efficiency and is applied to an induction heating system that can uniformly heat the object to be heated rather than conduction or convection heating, is in the limelight. This method induces a boiler pipe And it is recognized as an alternative that can solve the problem that occurs when heating is performed by direct heating. Despite the fact that research on induction heating has been conducted for a relatively long period of time, there have been few studies on the electrothermal technology using induction heating. Therefore, in this paper, to improve the heat efficiency of electric induction boiler, the influence of the cross sectional area, number of windings and winding layers is analyzed by finite element method through parametric study method. The method of finding the design point which maximizes the total loss is proposed by the alternating winding design method which can maximize the heat generation by analyzing copper and iron losses.