• Title/Summary/Keyword: 동서성분

Search Result 50, Processing Time 0.018 seconds

Synoptic Climatological Characteristics of Dry and Wet Years in Korea in the Spring (한국의 춘계 소우년과 다우년의 종관기후학적 특성)

  • 양진석
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.659-666
    • /
    • 2003
  • This study is a comparative analysis on the variabilities of spring precipitation and atmospheric circulations of 500hPa surfaces between dry years and wet years over the Korean Peninsula. The distribution of variabilities of precipitation in spring are different from month to month. In March, the pattern is west-high and east-low, in April, north-high and south-low, in May, east-high and west-low respectively. In the distribution of 500hPa geopotential height anomaly, dry years of March show west-high and east-low pattern in that negative anomaly zones are formed around the Korean Peninsula and western coast of the northern Pacific Ocean, and positive anomaly zones are formed in the inland of East Asia centered on Siberia. Consequently, the Korean Peninsula and neighboring regions experience dry season when the zonal flows are strong with the positive anomaly zones of zonal components. On the contrary in the wet years the westerlies are weak since the pattern is east-high and west-low in which the positive anomaly zones are formed over the Korean Peninsula centered on the Aleutian Islands and western coast of the northern Pacific Ocean and the negative anomaly zones are formed in the inland of East Asia centered on Tibet Plateau and Siberia. The dry years of April and May show north-high and south-low patterns in that negative anomaly zones are found from the center of the northern Pacific Ocean to the eastern coast of East Asia, and the positive anomaly zones are found in the center of East Asia extending from Aleutian Islands to Tibet Plateau. On the contrary, in the wet years the patterns show south-high and north-low. This study identified not only that there are contrary atmospheric circulation patterms between dry years and wet years over Korean Peninsua in spring, but also there are different atmosphric circulation patterns between early and late spring.

Empirical Orthogonal Function Analysis of Surface Pressure, Sea Surface Temperature and Winds over the East Sea of the Korea (Japan Sea) (한국 동해에서의 해면기압, 해수면온도와 해상풍의 경험적 직교함수 분석)

  • NA Jung-Yul;HAN Snag-Kyu;SEO Jang-Won;NOH Yi-Gn;KANG In-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.188-202
    • /
    • 1997
  • The seasonal variability of the sea surface winds over the last Sea of Korea (Japan Sea) is investigated by means of empirical orthogonal function (EOF) analysis. The combined representation of fields of three climatic variables by empirical orthogonal functions is discussed. The eigenvectors are derived from daily sea level pressure, wind speed and 10-day mean sea surface temperature (SST) during 15 years $(1978\~1992)$. The spatial patterns of the mean pressure are characterized by the high pressure in the western part and the low pressure in the eastern part. The spatial distribution of the standard deviation (SD) of pressure are characterized by max SD of 6.6 mb near the Vladivostok, and minima along the coast of the Japan. In Vladivostok, the maxima of SD of SST and south-north wind (WV) were also occurred. The representation of fields of individual meteorological variables by EOF shows that the first mode of the west-east wind (WU) explain over $47.3\%$ of the variance and the second mode of WU represents $30\%$. Especially, the first mode of the WV explain $70.9\%$ of the variance and their time series coefficients show 1-cpy, 0.5-cpy frequency spectrum. The spatial distribution of the first mode eigenvectors of SST are characterized by maximum near Vladivostok. The combined representation of fields of several variables (pressure, wind, SST) reveals that the first mode magnitudes of the variance of the combined eigenvectors (WU-PR) are increased. By means of this result, the 1-year peak and the 6-months peak are remarkable. In the three combined patterns (wind, pressure, SST), the second mode of the eigenvector (wind) is affected by the SST. Their time coefficients of the first mode show noticeable 1-year peak. The spectral analysis of the second mode shows broad seasonal signal with the period of 4-months and a significant peak of variability at 3-month period.

  • PDF

Geopotentinl Field in Nonlinear Balance with the Sectoral Mode of Rossby-Haurwitz Wave on the Inclined Rotation Axis (섹터모드의 로스비하우어비츠 파동과 균형을 이루는 고도장)

  • Cheong, Hyeong-Bin;Park, Ja-Rin
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.936-946
    • /
    • 2007
  • Analytical geopotential field in balance with the sectoral mode (the first symmetric mode with respect to the equator) of the Rossby-Haurwitz wave on the inclined rotation axis was derived in presence of superrotation background flow. The balanced field was obtained by inverting the divergence equation with the time derivative being zero. The inversion consists of two steps, i.e., the evaluation of nonlinear forcing terms and the finding of analytical solutions based on the Poisson's equation. In the second step, the forcing terms in the from of Legendre function were readily inverted due to the fact that Legendre function is the eigenfunction of the spherical Laplacian operator, while other terms were solved either by introducing a trial function or by integrating the Legendre equation. The balanced field was found to be expressed with six zonal wavenumber components, and shown to be of asymmetric structure about the equator. In association with asymmetricity, the advantageous point of the balanced field as a validation method for the numerical model was addressed. In special cases where the strength of the background flow is a half of or exactly the same as the rotation rate of the Earth it was revealed that one of the zonal wavenumber components vanishes. The analytical balanced field was compared with the geopotential field which was obtained using a spherical harmonics spectral model. It was found that the normalized difference lied in the order of machine rounding, indicating the reliability of the analytical results. The stability of the sectoral mode of Rossby-Haurwitz wave and the associated balanced field was discussed, comparing with the flrst antisymmetric mode.

On the Annual Change of Surface Wind at Seocheon, Korea (서천지방의 지상풍 연변화에 관하여)

  • 문승의;김백조
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.375-382
    • /
    • 1998
  • The characteristics of the basic statistics and steadiness of wind and the monthly normality test of surface wind distribution are investigated by using the observed wind data compiled from 10m meteorological observation tower at Seocheon district, where is located In the western coastal region of Korea. during the period from Feb. 7, 1996 to Feb. 7 1997 The northerly is appeared to be even in August and Sepember due to the influences of loccal circulation such as land and sea breeze. The correlation coefacients between two wind components are seemed to be positive during the in the period of from June to September and negative from October to April, respectively The constancy of wand Is high In shifts to lower values Increasing sampling time. It is found from monthly normality test based on the skewness and the excess of kurtosis coefficients that the distribution of zonal wind component is normal In spring and meridional one Is normal in late summer and early autumn.

  • PDF

Stability of the Divergent Barotropic Rossby-Haurwitz Wave (발산 순압 로스비-하우어비츠 파동의 안정성)

  • Jeong, Han-Byeol;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.37 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Stability of the barotropic Rossby-Haurwitz wave is investigated using the numerical models on the global domain. The Rossby-Haurwitz wave under investigation is composed of the basic zonal flow of super-rotation and a finite amplitude spherical harmonic wave. The Rossby-Haurwitz wave is given as either steady or unsteady wave by adjusting the strength of the super-rotating zonal flow. Stability as well as the growth rate of the wave in the numerical simulation is determined by comparing the perturbation amplitude at two different time stages. Unstable modes of the Rossby-Haurwitz wave exhibited a horizontal structure composing of various zonal-wavenumber components. The vorticity perturbation for some modes showed a discontinuity around the area of weak flow, which was found robust regardless of the horizontal resolution of the model. Fourier finite element model was shown to generate the unstable mode in earlier stage of the time integration due to less accuracy compared to the spherical harmonic spectral model. Taking the overall accuracy of the models into consideration, the time by which the unstable mode begin to dominate over the spherical harmonic wave was estimated.

CLIMATOLOGICAL CHARACTERISTICS OF THE POLAR IONOSPHERE BASED ON THE SONDRESTROM INCOHERENT SCATTER RADAR MEASUREMENTS (SONDRESTROM 비간섭 산란 레이더 자료를 이용한 극지방 전리층의 기후학적 특성 연구)

  • 곽영실;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.75-88
    • /
    • 2002
  • The climatological characteristics of the polar ionosphere is examined in terms of the ionospheric conductance and electric field. For this purpose, 109 days of measurements from the Sondrestrom incoherent scatter radar are utilized. By combining these two quantities, it is possible to deduce the overhead ionospheric current distributions. The ionospheric current density thus obtained is compared with the corresponding ground magnetic disturbance. Also examined is the effect of the field-aligned current on the ground magnetic disturbance, particularly on the D component Several interesting climatological characteristics about the ionosphere over the Sonderstrom are apparent from this study. (1) The conductance distribution is mainly due to solar EUV radiation during day-time On the other hand, the conductance distribution during the night-time is very low. (2) The conductance distribution one. the polar cap region during the day-time is controlled mostly by the solar EUV radiation, while it is extremely low during night-time wish the Hall and Pedersen conductances being 1.6 and 1.2 siemen, respectively (3) The region of the maximum N-S electric field tend to locate in the dayside sector. The E-W component of the electric field is stronger than that over Chatanika (4) The E-W auroal inospheric current (J/sub E/) is more important in the sunlit hemisphere than the night hemisphere. And a strong southward current is noted in the prenoon sector (5) There is a significant correlation between the overhead ionospheric current and the simultaneously observed ground magnetic disturbance. However, the assumption for the infinite sheet current approximation is far from realistic, underestimating the current density. And the correlation between ${\Delta}H$ and J/sub E/ is higher than the one between ${\Delta}D$ and J/sub N/ , indicating that field-aligned current affects significantly ${\Delta}D$.

Comparison of Wind Profiler Wind Measurements with Rawinsonde Data at Bukgangneung (북강릉 지점의 연직바람관측장비 바람자료와 레윈존데 자료의 비교)

  • Kwon, Ju-Hyeong;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.249-265
    • /
    • 2018
  • The Korea Meteorological Administration has been operating wind profiler at 9 stations since the year of 2007. Among these stations, Bukgangneung is the only one that produces regularly both rawinsonde and wind profiler wind measurements at the same time. In this study, wind profiler measurements were compared with rawinsonde wind at Bukgangneung. Unlike most other studies which have used the temporal measurements for several days in summer season, in this study the routine rawinsonde measurments during almost one year (2016) were employed for the accuracy test of the wind. The monthly mean maximum observation height in Bukgangneung shows a large seasonal variation; it was relatively high in summer (4,310 m in July) and low in winter (2,130 m in December). The vertical observation rates at the altitude above these heights were less than 50%. The monthly and vertical wind comparison between rawinsonde and wind profiler shows that absolute bias and RMSE of zonal and meridional wind velocity are mostly less than 1 m/s and less than 2 m/s, respectively. In winter season the RMSE of wind velocity increased to 2~3 m/s. However, at some high altitudes and certain months, large errors were found. It is shown that these errors were related with very weak wind (less than 1 m/s) of wind profiler at 3,500~4,000 m from January to May and dramatic changes of wind the height of 1,500~2,500 m for in April. For Snow events the errors were lower than those for the winter season and for the heavy rain events the errors increased to 3~4 m/s at the height of 4~5 km.

Spherical Slepian Harmonic Expression of the Crustal Magnetic Vector and Its Gradient Components (구면 스레피안 함수로 표현된 지각 자기이상값과 구배 성분)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.269-280
    • /
    • 2016
  • I presented three vector crustal magnetic anomaly components and six gradients by using spherical Slepian functions over the cap area of $20^{\circ}$ of radius centered on the South Pole. The Swarm mission, launched by European Space Agency(ESA) in November of 2013, was planned to put three satellites into the low-Earth orbits, two in parallel in East-West direction and one in cross-over of the higher altitude. This orbit configuration will make the gradient measurements possible in North-South direction, vertical direction, as well as E-W direction. The gravity satellites, such as GRACE and GOCE, have already implemented their gradient measurements for recovering the accurate gravity of the Earth and its temporal variation due to mass changes on the subsurface. However, the magnetic gradients have little been applied since Swarm launched. A localized magnetic modeling method is useful in taking an account for a region where data availability was limited or of interest was special. In particular, computation to get the localized solutions is much more efficient and it has an advantage of presenting high frequency anomaly features with numbers of solutions fewer than the global ones. Besides, these localized basis functions that were done by a linear transformation of the spherical harmonic functions, are orthogonal so that they can be used for power spectrum analysis by transforming the global spherical harmonic coefficients. I anticipate in scientific and technical progress in the localized modeling with the gradient measurements from Swarm and here will do discussion on the results of the localized solution to represent the three vector and six gradient anomalies over the Antarctic area from the synthetic data derived from a global solution of the spherical harmonics for the crustal magnetic anomalies of Swarm measurements.

남극세종기지($62^{\circ}S$, $57^{\circ}W$) 유성 레이더로 관측한 중간권계면에서의 중량파 특성

  • Lee, Chang-Seop;Kim, Yong-Ha;Kim, Jeong-Han;Choe, Jong-Min;Ji, Geon-Hwa
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.29.3-29.3
    • /
    • 2010
  • 남극세종기지 상공 중간권계면에서의 중량파(gravity wave)를 연구하기 위해 세종기지 유성 레이더로 관측한 유성 에코를 분석하였다. 2007년 이후 유성 에코의 공간적 이동으로부터 유성 관측 고도에서의 수평 바람 정보를 지속적으로 수집해왔다. 80-100 km 고도에서의 바람 프로파일에서 지구 규모의 성분인 평균 바람(Mean wind), 대기 조석 효과(Tides)를 제거하여 국지적인 규모의 중량파에 의한 바람 변화폭(wind variance)을 결정하였다. 월 단위로 평균한 결과로부터 중량파가 계절과 고도에 대한 뚜렷한 특징을 보이고 있음을 확인하였다. 남극 지역에서의 중량파는 동서방향의 바람(zonal wind)와 저층 대기의 남극 소용돌이(vortex)와 깊은 관련이 있을 것으로 생각된다. 남극 반도에 위치한 Rothera 기지에서의 관측 결과와의 비교를 통하여, 남극 반도에서 발생하는 중량파가 중간권과 저층 대기 사이에서 어떤 역할을 하는 지를 확인할 수 있을 것으로 기대한다.

  • PDF

Source Parameters of the Southern Yellow Sea Earthquake Occurred on July 25, 1994 (1994년 7월 25일 발생한 황해남부 지진의 지진원 요수)

  • 김성균;김민선
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.113-118
    • /
    • 1998
  • 1994년 7월 25일 발생한 황해남부 지진(Mb=5.5)의 지진원 요소들을 결정하였다. 지진원 요소들을 결정하기 위하여 이 지진에 대하여 이전의 연구에서 얻어진 지진발생기구를 사용하였다. 지진발생기구에 의하면, 이 지진은 거의 동서방향의 압축응력장에 주향이동성분이 가미되어 발생한 것을 암시한다. 지진원 요소들은 단주기 및 장주기 P파에 대한 원지장 스펙트럼으로부터 계산되었다. 지진모멘트(M0), 코너주파수(f0), 지진원 반경(r) 및 응력강하량($\Delta$$\sigma$)은 각각 M0 = 3.18$\times$1024 dyne-cm, f0=0.3 Hz, r=3.7km, $\Delta$$\sigma$=27bar로 구해졌다. 지진모멘트로부터 산정한 모멘트 규모는 5.6으로 나타났다.

  • PDF