Browse > Article
http://dx.doi.org/10.9719/EEG.2016.49.4.269

Spherical Slepian Harmonic Expression of the Crustal Magnetic Vector and Its Gradient Components  

Kim, Hyung Rae (Dept. of Geoenvron. Sci., Kongju Nat. Univ.)
Publication Information
Economic and Environmental Geology / v.49, no.4, 2016 , pp. 269-280 More about this Journal
Abstract
I presented three vector crustal magnetic anomaly components and six gradients by using spherical Slepian functions over the cap area of $20^{\circ}$ of radius centered on the South Pole. The Swarm mission, launched by European Space Agency(ESA) in November of 2013, was planned to put three satellites into the low-Earth orbits, two in parallel in East-West direction and one in cross-over of the higher altitude. This orbit configuration will make the gradient measurements possible in North-South direction, vertical direction, as well as E-W direction. The gravity satellites, such as GRACE and GOCE, have already implemented their gradient measurements for recovering the accurate gravity of the Earth and its temporal variation due to mass changes on the subsurface. However, the magnetic gradients have little been applied since Swarm launched. A localized magnetic modeling method is useful in taking an account for a region where data availability was limited or of interest was special. In particular, computation to get the localized solutions is much more efficient and it has an advantage of presenting high frequency anomaly features with numbers of solutions fewer than the global ones. Besides, these localized basis functions that were done by a linear transformation of the spherical harmonic functions, are orthogonal so that they can be used for power spectrum analysis by transforming the global spherical harmonic coefficients. I anticipate in scientific and technical progress in the localized modeling with the gradient measurements from Swarm and here will do discussion on the results of the localized solution to represent the three vector and six gradient anomalies over the Antarctic area from the synthetic data derived from a global solution of the spherical harmonics for the crustal magnetic anomalies of Swarm measurements.
Keywords
global spherical harmonics; spherical Slepian harmonics; gradient; Swarm constellation; Antarctic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sabaka, T.J., Olsen, N., Tyler, R.H., and Kuvshinov, A. (2015) CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Orsted, SAC-C and observatory data, Geophys. J. Int., v.200, p.1596-1626.   DOI
2 Seton, M., Muller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S. and Chandler, M. (2012) Global continental and ocean basin reconstructions since 200Ma, Earth-Science Reviews, v.113, p.212-270.   DOI
3 Simons, F. J. and Dahlen, F. (2006) Spherical Slepian functions and the polar gap in geodesy, Geophys. J. Int., v.166, p.1039-1061.   DOI
4 Simons, F. J., Dahlen, F. and Wieczorek, M.A. (2006) Spatiospectral concentration on a sphere, SIAM Review, v.48, p.504-536.   DOI
5 Slobbe, D.C., Simons, F.J. and Klees, R. (2012) The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid, J Geodesy, v.86, p.609-628.   DOI
6 Taylor, P.T. and Kis, K.I. (2014) Satellite-altitude horizontal magnetic gradient anomalies used to define the Kursk magnetic anomaly, J. App. Geophys., v.109, p.133-139.   DOI
7 Thebault, E., Schott, J.-J., Mandea, M. and Hoffbeck, J.-P. (2004) A new proposal for spherical cap harmonic modelling, Geophys. J. Int., v.159, p.83-103.   DOI
8 Thebault, E., Schott, J. and Mandea, M. (2006) Revised spherical cap harmonic analysis (R-SCHA): Validation and properties J. Geophys. Res., 111.
9 Thebault, E. P. Vigneron, S. Maus, A. Chulliat, O. Sirol and Hulot, G. (2013) Swarm SCARF dedicated lithospheric field inversion chain, Earth, Planets and Space, v.65, p.1257-1270.   DOI
10 von Frese, R.R., Kim, H.R., Tan, L., Kim, J.W., Taylor, P.T., Branch, G., Purucker, M., Alsdorf, D. and Raymond, C. (1999) Satellite magnetic anomalies of the Antarctic crust, Ann. di Geofis., v.42, p.309-326.
11 Wang, L., Shum C., K. and Jekeli, C. (2012) Gravitational gradient changes following the 2004 December 26 Sumatra-Andaman earthquake inferred from GRACE, Geophys. J. Int., v.191, p.1109-1118.
12 Wieczorek, M.A. and Simons, F.J. (2005) Localized spectral analysis on the sphere, Geophys. J. Int., v.162, p.655-675.   DOI
13 Winch, D., Ivers, D., Turner, J. and Stening, R. (2005) Geomagnetism and Schmidt quasi-normalization. Geophys. J. Int., v.160, p.487-504.   DOI
14 Bird, P., Kagan, Y.Y. and Jackson, D.D. (2002) Plate tectonics and earthquake potential of spreading ridges and oceanic transform faults, in: S. Stein and J. T. Freymueller (editors), Plate Boundary Zones, Geodynamics Series, v.30, p.203-218.
15 Asgharzadeh, M.F., von Frese, R.R. and Kim, H.R. (2008) Spherical prism magnetic effects by Gauss-Legendre quadrature integration, Geophys. J. Int., v.173, p.315-333.   DOI
16 Backus, G., Parker, R.L. and Constable, C. (1996) Foundations of Geomagnetism, Cambridge Univ. press, p.369.
17 Beggan, C.D., Saarimaki, J., Whaler, K.A. and Simons, F.J. (2013) Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions, Geophys. J. Int., v.193, p.136-148.   DOI
18 Bouman, J. M. Fuchs, E. Ivins, W. van der Wal, E. Schrama, P. Visser and Horwath, M. (2014) Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry. Geophys. Res. Lett. v.34, p.5919-5926.
19 Bradley, L.M. and Frey, H. (1991) Magsat magnetic anomaly contrast across Labrador Sea passive margins, J. Geophys. Res., 96, 16,161-16,168.   DOI
20 Bouman, J., Ebbing, J., Meekes, S., Fattah, R.A., Fuchs, M., Gradmann, S., Haagmans, R., Lieb, V., Schmidt, M., Dettmering, D. and Bosch, W. (2015) GOCE gravity gradient data for lithospheric modelling. Int. J. Appl. Earth Obs. v.35, p.16-30.   DOI
21 De Santis, A., Kerridge, D.J. and Barraclough, D.R. (1989) A Spherical Cap Harmonic Model of the Crustal Magnetic Anomaly Field in Europe by Magsat. In Geomagnetism and Paleomagnetism, ed. F.J. Lowes et al., pp.1-17.
22 Du, J., Chen, C., Lesur, V. and Wang, L. (2015) Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame, Geosci. Model Dev., v.8, p.1979-1990.   DOI
23 Ebbing, J., et al. (2013) Advancements in satellite gravity gradient data for crustal studies. The Leading Edge, v.32, p.900-906.   DOI
24 Fuchs, M.J., Bouman, J., Broerse, T., Visser, P. and Vermeersen, B. (2013) Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry. J. Geophys. Res. v.118, p.5712-5721.   DOI
25 Gaya-Pique, L.R., Kim, H., von Frese, R.R., Chiappini, M., Taylor, P.T. and Golynsky, A.V. (2005) Spherical Cap Harmonic Modeling of the Antarctic Magnetic Anomaly Map, AGU Fall meeting, Abs. 2005AGUSMGP13A..02G
26 Grunbaum, F.A. (1981) Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions, SIAM J. Alg. Disc. Meth., v.2, p.136-141.   DOI
27 Haagmans, R. and Floberghaben, R. (2014) Swarm: from Earth to Magnetosphere one year after launch, AGU Fall meeting Abs., 2014AGUFMSM11B..01H.
28 Han, S.-C. and Simons, F.J. (2008) Spatiospectral localization of global geopotential fields from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra-Andaman earthquake, J. Geophys. Res. 113.
29 Haines, G. (1985) Spherical cap harmonic analysis, J. Geophys. Res., v.90, p.2583-2591.   DOI
30 Han, S.-C. (2008) Improved regional gravity fields on the Moon from Lunar Prospector tracking data by means of localized spherical harmonic functions, J. Geophys. Res., v.113, p.E11012.   DOI
31 Harig, Christopher, K. W. Lewis, A. Plattner and Simons, F.J. (2015) A suite of software analyzes data on the sphere. Eos, 96, 2015EO025851.
32 Ivanic, J. and Ruedenberg, K. (1996) Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion, J. Phys. Chem, v.100, p.6,342-6,347.   DOI
33 Langel R.A. (1987) The Main Field. In Geomagnetism, vol. I, ed. J.A. Jacobs, Academic Press Limited, London.
34 Li, J. and Shen, W.-B. (2015) Monthly GRACE detection of coseismic gravity change associated with 2011 Tohoku-Oki earthquake using northern gradient approach, Earth, Planets and Space, 67, DOI: 10.1186/s40623-015-0188-0.   DOI
35 Lowes, F.J. (1966) Mean-square values on sphere of spherical harmonic vector ?elds, J. Geophys. Res., v.71, p.2179.   DOI
36 Kim, H.R. Von Frese, R.R. Golynsky, A.V. Taylor, P.T. and Kim, J.W (2005) Crustal analysis of maud rise from combined satellite and near-surface magnetic survey data Earth, Planets, Space, v.57, p.717-726.   DOI
37 Kim, H.R. (2015) A localized secular variation model of the geomagnetic field over Northeast Asia region between 1997 to 2011, Econ. Environ. Geology, v.48, p.51-63.   DOI
38 Kim, H.R., von Frese, R.R.B., Taylor, P.T., Golynsky, A.V., Gaya-Pique, L.R. and Ferraccioli, F. (2007) Improved magnetic anomalies of the Antarctic lithosphere from satellite and near-surface data, Geophys. J. Int., v.171, p.119-126.   DOI
39 Kim, H.R. and von Frese, R.R. (2013) Localized analysis of polar geomagnetic jerks, Tectonophysics, v.585, p.26-33.   DOI
40 Kim, H.R., von Frese, R., Hong, J. and Golynsky, A. (2013) A regional lithospheric magnetic modeling over Antarctic region, European Geosci. Union, Abs., v.15, p.5491.
41 Kotsiaros, S. and Olsen, N. (2012) The geomagnetic field gradient tensor, Int. J. Geomath., v.3, p.297-314.   DOI
42 Panet, I., Pajot-Metivier, G., Greff-Lefftz, M., Metivier, L., Diament, M. and Mandea, M. (2014) Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients. Nat. Geosci., v.7, p.131-135.   DOI
43 Plattner, A. and Simons, F.J. (2014) Spatiospectral concentration of vector fields on a sphere, App. Comp. Harmonic Analys., v.36, p.1-22.   DOI
44 Plattner, A. and Simons, F.J. (2015) High-resolution local magnetic field models for the Martian South Pole from Mars Global Surveyor data, J. Geophys. Res., v.120, p.1543-1566.
45 Ravat, D. B. Wang, E. Wildermuth and Taylor, P.T. (2002) Gradients in the interpretation of Satellite-altitude Magnetic Data: An Example from Central Africa, J. Geodynamics, v.33, p.131-142.   DOI