• Title/Summary/Keyword: 동상

Search Result 503, Processing Time 0.024 seconds

Evaluation on the Reliability of Frost Susceptibility Criteria (동상민감성 판정 기준 신뢰성에 관한 연구)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.37-45
    • /
    • 2017
  • Structural instability and damage are caused by frost heave during the winter when atmospheric temperature maintains below $0^{\circ}C$. Frost heave is the most representative engineering characteristics of frozen ground and there are various frost susceptibility criteria. Frost susceptibility criteria can be roughly divided into three categories. First, frost susceptibility is determined from particle size distribution, which is practically useful and many countries are adopting. In this paper, several particle size distributions (PSDs) are applied to the frost susceptibility criteria but PSD seems to be not enough to determine whether soils are frost susceptible. Second, it is judged from laboratory frost heave testing results. Laboratory frost heave tests were performed with newly developed thermal controlled triaxial cell and the reliability of frost susceptibility criteria is evaluated. New testing apparatus and method are suitable to meet the existing frost susceptibility criteria. Third, it is compositive frost susceptibility criteria envelope including the particle size distribution, soil classification, and frost heave test. The compositive frost susceptibility criteria envelope should be supplemented based on additional data on various soil types.

Experimental Evaluation on JGS Frost Susceptibility Testing Method (일본 동상민감성 판정 기준에 관한 고찰)

  • Jangguen Lee;Hyunwoo Jin;Zheng Gong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.7
    • /
    • pp.21-27
    • /
    • 2024
  • Frost heave, a significant engineering aspect of frozen ground, leads to various damages in Korea during the winter. Both the United States and Japan, encompassing regions with frozen ground, have actively researched frost heave and possess standardized experimental methods. Particularly, the Japanese Geotechnical Society (JGS) has introduced a frost heave standard testing method, offering the advantage of relatively simple specimen preparation and experimental procedures. However, issues persist regarding the ambiguous engineering interpretation of frost heave test results and the lack of clear criteria for frost heave susceptibility assessment. This paper presents laboratory testing results following the JGS testing method on sand and silt mixtures using a triaxial temperature-controllable cell, and thoroughly analyzes the frost heave rate calculation process. Furthermore, it evaluates the applicability of frost heave susceptibility criteria proposed in the United States to frost heave rates based on the JGS testing method.

Experimental Investigation of Frost Heaving Susceptibility with Soils from Terra Nova Bay in Eastern Antarctica (동남극 테라노바만 흙 시료의 동상특성에 관한 실험적 연구)

  • Hong, Seungseo;Park, Junghee;Lee, Jongsub;Lee, Jangguen;Kang, Jaemo;Kim, Youngseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.5-16
    • /
    • 2012
  • The second scientific antarctic station of South Korea is under construction at Terra Nova Bay located in eastern Antarctica. Ground condition in the Antarctica is frozen in general, but there are seasonal frozen grounds with active layers sporadically. When the active layer is frozen, frost heaving occurs that might cause the differential movement of frozen ground and the failure of structures. Therefore, it is necessary to determine the frost heaving susceptibility of soils at Terra Nova Bay before starting antarctic station construction. This study presents experimental investigation of the frost heaving susceptibility of soil samples with variation of particle sizes and unfrozen water contents. The soil samples were taken from five different locations at Terra Nova Bay and physical properties, unfrozen water content, and frost heaving tests were performed. For the frost heaving tests, soil specimens were frozen with constant freezing temperatures at the top and with drainage at the bottom in order to stimulate the frost heaving. The frost heaving tests provide volume expansion, volumetric strain, and heaving rate which can be used to analyze the relationship between the frost heaving vs. particle size and the frost heaving vs. unfrozen water content. Experimental results show that the more the fine contents exist in soils, the more frost heaving occurs. In addition, the frost heaving depends on unfrozen water content. Experimental data can be used to evaluate the frost heaving susceptibility of soils at the future construction site in the Antarctica.

Experimental Assessment and Specimen Height Effect in Frost Heave Testing Apparatus (동상시험장비의 실험적 검증 및 시료크기의 영향에 관한 연구)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Frost heave is one of the representative engineering characteristics in cold regions. In South Korea, which is located in seasonal frost area, structural damage caused by frost heave and thaw happens and the need for research on the frost heave is increasing. In this paper, newly developed transparent temperature-controllable cell is used to focus on the frost heave. Frost susceptible artificial soil is used to analyze water intake rate which is one of the important factors in frost susceptibility criteria. Frost heave rate and water intake rate have similar behavior after heave by freezing of pore water converges. O-ring installed in the upper pedestal to measure water intake rate generates side friction between the inner wall of the freezing cell and O-ring, thereby hindering frost heave. Therefore, the frost susceptibility criteria using the water intake rate is not reliable. It is appropriate to use frost heave rate which has similar behavior with water intake rate. Frost heave tests were performed under two different specimen heights. Overburden pressure, temperature gradient and dry unit weight were set under similar state. Based on laboratory testing results, frost heave is independent on the specimen height.

Numerical Model with Segregation Potential on Frost Heave and Reliability Assessment for Silty Soils (Segregation Potential 기반 동상 예측 모델 및 실트질 토양을 이용한 동상해석 신뢰성 평가)

  • Jangguen Lee;Zheng Gong;Hyunwoo Jin;Byunghyun Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.41-46
    • /
    • 2023
  • Numerical analysis of frost heave is challenging due to the influence of soil and environmental factors. Thermo-hydromechanical coupled analysis relies heavily on excessive input variables and primarily focuses on validating clayey soils, so it is limited to frost susceptible silty soils. An empirical approach based on thermodynamics offers relatively simple frost heave analysis and the advantage of linking constitutive equations with frost heave to enable geomechanical interpretations. In this paper, we introduce an empirical numerical model using the Segregation Potential (SP) and evaluate reliability through comparative analysis with experimental results of frost susceptible silty soils. While the SP model enables frost heave analysis for the given silty soils, further investigation on various silty soils is necessary to gather data on key input variables.

Development of Model for Structural Evaluation of Anti-Freezing Layer (동상방지층의 구조적 평가를 위한 모형 개발)

  • Lee, Moon-Sup;Heo, Tae-Young;Park, Hee-Mun;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2012
  • The thickness of anti-freezing layer has been empirically determined using the frost depth obtained from the freezing index and has not been generally considered as a structural layer in pavement design procedure. In fact, the anti-freezing layer makes a role in structural layer and enables to reduce the total thickness of pavement system. The objective of this study is to develop the statistical regression model for evaluating the structural capacity of anti-freezing layer using Falling Weight Deflectormeter(FWD) test data in asphalt pavements. The FWD testing was conducted at the embankment, cutting, and boundary area of various test sections to estimate the structural capacity of anti-freezing layer in different foundation condition. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer ranging from 0.4 to 82.6%. To determine the variables of statistical model, the correlation study has been conducted between various FWD deflection indexes and the anti-freezing layer thickness. It is found that the ${\Delta}BDI$(%)(${\Delta}Basin$ Damage Index(%)) is highly correlated with anti-freezing layer thickness. The ${\Delta}BDI$(%) model were developed for evaluating structural capacity of anti-freezing layer using linear mixed-effect models.

Geotechnical Characteristics of Frost-Susceptibility Soil Using Modified Freeze-Thaw Apparatus (변형된 동결-융해 시험장치를 이용한 동상민감성흙의 지반공학적 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • A new system of modified freeze-thaw testing apparatus is introduced. This system is developed to evaluate the geotechnical parameters and their dependence upon freezing-thawing history of frost-susceptibility soil. A necessary condition for stationary frost heaving is clarified in this paper. The method changes the thermal boundary condition up to the net heat flow at the freezing frost becomes zero. The effectiveness of this method is verified by freeze-thaw tests. Frost heaving observed after the application of the method is found to be due to another frost heaving action called long-term frost heaving. This frost heaving has already been studied and is considered ignorable as engineering factor because of its small heaving amount.

  • PDF

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis (민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석)

  • Go, Gyu-Hyun;Lee, Jangguen;Kim, Minseop
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.49-60
    • /
    • 2020
  • A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.

Structural assessment of Anti-Freezing Layer with use of Falling Weight Deflectormeter Deflection (Falling Weight Deflectormeter를 이용한 동상방지층의 구조적 특성 분석)

  • Lee, Moon-Sup;Kim, Boo-Il;Jeon, Sung-Il;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • Until now, the thickness design of anti-freezing layer has been empirically conducted using the frost depth determined from the freezing index. This approach cannot consider the structural properties of anti-freezing layer, which can cause the over-design of pavement structure. This paper presents results of structural evaluation of anti-freezing layer using the Falling Weight Deflectormeter (FWD) deflections. The FWD testing was directly conducted on top of the subbase layer located at the embankment, cutting, and boundary area of each section. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer. The deflection reduction rates are 15~55% in the embankment, 11~64% in the cutting, and 2~38% in the boundary, respectively. It was also found that the use of antifree zing layer enables to reduce the Surface Curvature Index (SCI) values up to 24 percent. Fatigue lives show that pavement structure with antifreezing layer are about two times higher than the those without anti-freezing layer. This fact indicates that the anti-freezing layer should be considered as a structural layer in the asphalt pavement system.

An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils (동결토의 동상팽창압 특성에 관한 실험적 연구)

  • 신은철;박정준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • Most of land reclamation projects are being implemented along the south and west coastal lines of the Korean Peninsula. The earth structures and in-ground LNG tank, and buildings can be constructed using artificial freezing method on the reclaimed land to control the uplift pressure caused by capillary forces. In this study, upon freezing a saturated soil in a closed-system from the top, a considerable frost heaving pressure was developed. Decomposed granite soils, silty soil, and sandy soil were used in the laboratory freeze test which is sometimes subjected to thermal gradients under closed-systems. A major concern has been the ability to predict the frost heaving pressure over the results of relatively short-term laboratory tests. The frost heaving pressure arising within the soil samples and the temperature of the samples inside were monitored with time elapse. The degree of saturation versus heaving pressure curve is presented for each soil sample and the maximum pressure is closely related to this curve. TDR apparatus was used to measure the volumetric water content by the measurement of unfrozen water contents of frozen soils. Unfrozen water increased in soils containing a high percentage of fine-grained particles. In fine-grained soils with strong attractive farces between soil grains and water molecules, additional water is attracted into the pores leading to further volume changes and ice segregation.