Experimental Investigation of Frost Heaving Susceptibility with Soils from Terra Nova Bay in Eastern Antarctica

동남극 테라노바만 흙 시료의 동상특성에 관한 실험적 연구

  • 홍승서 (한국건설기술연구원 SOC성능연구소 Geo-인프라연구실, 고려대학교 건축사회환경공학부) ;
  • 박정희 (고려대학교 건축사회환경공학부) ;
  • 이종섭 (고려대학교 건축사회환경공학부) ;
  • 이장근 (한국건설기술연구원 SOC성능연구소 Geo-인프라연구실, 고려대학교 건축사회환경공학부) ;
  • 강재모 (한국건설기술연구원 SOC성능연구소 Geo-인프라연구실) ;
  • 김영석 (한국건설기술연구원 SOC성능연구소 Geo-인프라연구실)
  • Published : 2012.12.01

Abstract

The second scientific antarctic station of South Korea is under construction at Terra Nova Bay located in eastern Antarctica. Ground condition in the Antarctica is frozen in general, but there are seasonal frozen grounds with active layers sporadically. When the active layer is frozen, frost heaving occurs that might cause the differential movement of frozen ground and the failure of structures. Therefore, it is necessary to determine the frost heaving susceptibility of soils at Terra Nova Bay before starting antarctic station construction. This study presents experimental investigation of the frost heaving susceptibility of soil samples with variation of particle sizes and unfrozen water contents. The soil samples were taken from five different locations at Terra Nova Bay and physical properties, unfrozen water content, and frost heaving tests were performed. For the frost heaving tests, soil specimens were frozen with constant freezing temperatures at the top and with drainage at the bottom in order to stimulate the frost heaving. The frost heaving tests provide volume expansion, volumetric strain, and heaving rate which can be used to analyze the relationship between the frost heaving vs. particle size and the frost heaving vs. unfrozen water content. Experimental results show that the more the fine contents exist in soils, the more frost heaving occurs. In addition, the frost heaving depends on unfrozen water content. Experimental data can be used to evaluate the frost heaving susceptibility of soils at the future construction site in the Antarctica.

우리나라는 세종과학기지에 이어 두 번째로 남극에 과학기지를 건설하는 사업을 진행하고 있다. 남극은 영구동토지역으로 분류되지만 일부 지반의 상부에는 활동층이 존재한다. 이 활동층이 동결되면 동결팽창으로 인해 지반의 융기가 발생하고 구조물에 부가적인 응력이 유발되어 구조물 안정에 심각한 영향을 미치게 된다. 그러므로 남극 기지 건설지에 대한 동상 특성을 파악하는 것은 구조물의 수명 및 안정성을 확보하기 위해 필수적이라고 할 수 있다. 본 연구의 목적은 남극 제2기지 건설지에 대한 동상민감성을 정량적으로 평가하고 흙 입자의 크기와 부동수분량이 동상에 미치는 영향을 파악하는 것이다. 이를 위해 동남극 테라노바만 주변 기지 건설지 표층에서 채취한 흙 시료에 대해 기본물성실험과 부동수분실험, 동상실험을 수행하였다. 동상실험의 경우 공시체 상부에 냉기를 주입하고 하부에는 물을 지속적으로 공급하여 동상이 발생하도록 유도하였다. 동상실험으로부터 공시체의 동상량과 동상비, 동상속도를 도출하였고, 실험 결과가 흙 입자의 크기 및 부동수분량과 어떤 상관관계가 있는지 분석하였다. 분석 결과 채취한 시료의 미세분 함량이 일정비율을 넘으면 흙 시료의 동상이 크게 발생하였고, 동결토 내의 부동수분에 따라 동상정수는 영향을 받는 것으로 나타났다. 본 연구는 동남극 테라노바만 흙 시료에 대하여, 동결토의 동상에 중요한 영향인자인 흙 입자의 크기 및 부동수분량과 동상량 사이의 관계를 실험적으로 규명하였다는 데에 그 의의가 있다.

Keywords

References

  1. 日本土質工學會(1994), 土質基礎工學 ライブラリ-23, pp. 98-99.
  2. 日本地盤工學會(2003), 新規制定地盤工學會基準. 同解說 VII, pp. 39-44, 45-50.
  3. Akagawa, S.(1988), Experimental Study of Frozen Fringe Charateristics, Cold Regions Science and Technology, Vol. 15, Issue 3, pp. 209-223. https://doi.org/10.1016/0165-232X(88)90068-7
  4. Andersland, O. B. and Ladanyi, B.(2004), Frozen Ground Engineering, 2nd Ed., ASCE Press and John Wiley & Sons, Inc. NewYork, pp. 32-43.
  5. ASTM D5918-06(2006), Standard Test Methods for Frost Heave and Thaw Weakening Susceptibility of Soils, Annual Book of ASTM Standard.
  6. Grim, R. E.(1952), Relation of Frost Action to the Clay-Mineral Composition of Soil Minerals, Highw. Res. Board, Proc. Annu. Meet., Washington, DC, Vol. 2, pp. 167-172.
  7. Hoekstra, P.(1966), Moisture Movement in Soils under Temperature Gradients with the Cold-Side Temperature Below Freezing, Water Resour. Res, Vol. 22, No. 2, pp. 241-250.
  8. Hong, S. W.(1989), Special Lecture: Characteristics of Permafrost, 1989 Korean Geotechnical Society Fall National Conference, Korea, Vol. 1, No. 1, pp. 6-14.
  9. Hong, S. S., Kim, Y. S., Lee, J. G. and Kang, J. M.(2010), The Effect of Frost Protection of Waste Materials Using the TRRL Frost-Heave Test, 2010 Korean Geo-Environmental Society Fall Conference, pp. 557-562.
  10. Hong, S. W., Kim, Y. C., Heo, S. B. and Kong, K. Y.(1992), Development of Effective Methods Design and Construction of Foundation in Cold Regions, Report(1), Ministry of Science and Technology, pp. 40-42.
  11. Hyundai Engineering & Construction Co., Ltd.(2011), Design Manual of Jang Bogo Station. pp. 115-118.
  12. ISSMFE TC-8(1989), Grain Size Distribution as a Frost Susceptibility Criterion of Soil, VTT Symposium, Vol. 1, pp. 29-32.
  13. Jin, J. H(2004), Prediction Model of the Frost Penetration Depth on Subgrade, Ph. D. Dissertation, Incheon University. pp. 5-37.
  14. Johnson, T., Berg, R., Chamberlain, E. and Cole, D.(1986), Frost Action Predictive Survey Techniques for Roads and Airfields: A Comprehensive Survey of Research Findings, U.S. Army Cold Resigns Research Engineering Laboratory, CRREL Technical Report 86-18, pp. 1-50.
  15. Jones, R. H.(1981), Developments and Applications of Frost Susceptibility Testing, Engineering Geology, Vol. 18, Issue1-4, pp. 269-280. https://doi.org/10.1016/0013-7952(81)90066-1
  16. Kim, B. I. and Jeon, S. I.(2005), Development of Calibaration Model and Analysis of Soil Water Content Using Time-Domain Reflectometry Probe in LTPP Sections, Journal of Korean Society of Road Engineers, Vol. 7, No. 4, pp. 103-112.
  17. Kim, Y, C.(2005), Effect of Unfrozen Waver on Frozen Soil, Journal of Korean Geoenvironmental Society, Vol. 6, No. 2, pp. 68-74.
  18. Kim, Y. S., Lee, J. G., Hong, S. S., Kang, J. M. and Kim, H. S.(2011), A Study on the Frost Penetration Depth in Pavements, Report, Korea Institute of Construction Technology, pp. 8-10.
  19. Korea Institute of Construction Technology(2010), Evaluation on the Suitability of Construction Site for the Second Antarctic Research Base and Establishment of Basic Plan for Eco-Friendly Construction, KICT Research Report, pp. 57-59.
  20. Kuroda, T.(1980), Theoretical Study of Frost Heaving, Proc. of the 4th Intl. Symp. on Ground Freezing, Sapporo, Vol. 1, pp. 39-46.
  21. Kweon, G. C.(2004), Freezing and Thawing Characteristics of Subgrade Soils in Korea, Journal of Korean Society of Civil Engineers,, Vol. 24, No. 2, pp. 213-219.
  22. Linell, K., and Kaplar, C.(1966), Description and Classification of Frozen Soils, U.S. Army Cold Resigns Research Engineering Laboratory, Technical Report 150, pp. 1-20.
  23. Phukan, A.(1985), Frozen Ground Engineering, Englewood Cliffs, N.J.; Prentice Hall, pp. 51-55.
  24. Penner, E.(1966), Pressures Developed During the Uni-Di-Rectional Freezing of Water Saturated Porous Materials, Physics of Snow and Ice, Sapporo Conference, Part 2, pp. 1401-1412.
  25. Shin, E. C., Moon, Y. S., Park, J. J. and Ryu, B. H.(2009), Characteristics of Unfrozen Water Contents with Freezing Soils, Journal of Korean Society of Road Engineers, 2009 Conference, pp. 221-226.
  26. Shin, E. C. and Park, J. J.(2003), An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils, Journal of the Korean Geotechnical Society, Vol. 19, No. 2, pp. 65-74.
  27. Shin, E. C, Ryu, B. H, Park, J. J.(2010), The Freezing Characteristics of Pavement Layer using the Field Road Model Test, Journal of the Korean Geotechnical Society, Vol. 26, No. 7, pp. 71-80.
  28. Su. W.(1989), Static strength Evaluation of Cohesionless Soil with Oversize Particles, Ph. D. Dissertation, Washington State University., pp. 120-130.
  29. Taber, S. (1929), Freezing, Journal of Geology, Vol. 37, No. 5, pp. 428-461. https://doi.org/10.1086/623637
  30. Topp, G. C., Davis, J. L. and Annan, A. P.(1980), Electro-magnetic Determination of Soil Water Content: Measurments in Coaxial Transmission Line, Water Resources Research, Vol. 16, No. 3, pp. 574-582. https://doi.org/10.1029/WR016i003p00574