• Title/Summary/Keyword: 동기클럭

Search Result 184, Processing Time 0.021 seconds

Conceptual Design Analysis of Satellite Communication System for KASS (KASS 위성통신시스템 개념설계 분석)

  • Sin, Cheon Sig;You, Moonhee;Hyoung, Chang-Hee;Lee, Sanguk
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • High-level conceptual design analysis results of satellite communication system for Korea augmentation satellite system (KASS) satellite communication system, which is a part of KASS and consisted of KASS uplink Stations and two leased GEO is presented in this paper. We present major functions such as receiving correction and integrity message from central processing system, taking forward error correction for the message, modulating and up converting signal and conceptual design analysis for concepts for design process, GEO precise orbit determination for GEO ranging that is additional function, and clock steering for synchronization of clocks between GEO and GPS satellites. In addition to these, KASS requires 2.2 MHz for SBAS Augmentation service and 18.5 MHz for Geo-ranging service as minimum bandwidths as a results of service performance analysis of GEO ranging with respect to navigation payload(transponder) RF bandwidth is presented. These analysis results will be fed into KASS communication system design by carrying out final analysis after determining two GEOs and sites of KASS uplink stations.

Implementation of a Jitter and Glitch Removing Circuit for UHF RFID System Based on ISO/IEC 18000-6C Standard (UHF대역 RFID 수신단(리더)의 지터(비트동기) 및 글리치 제거회로 설계)

  • Kim, Sang-Hoon;Lee, Yong-Joo;Sim, Jae-Hee;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.83-90
    • /
    • 2007
  • In this paper, we propose an implementation and an algorithm of 'Jitter and Glitch Removing Circuit' for UHF RFID reader system based on ISO/IEC 18000-6C standard. We analyze the response of TI(Texas Instrument) Gen2 tag with a reader using the proposed algorithm. In ISO/IEC 18000-6C standard, a bit rate accuracy(tolerance) is up to +/-22% during tag-to-interrogator communication and +/-1% during interrogator-to-tag communication. In order to solve tolerance problems, we implement the Jitter and Glitch Removing Circuit using the concept of tolerance and tolerance-accumulation instead of PLL(DPLL, ADPLL). The main clock is 19.2MHz and the LF(Link Frequency) is determined as 40kHz to meet the local radio regulation in korea. As a result of simulations, the error-rate is zero within 15% tolerance of tag responses. And in the case of using the adaptive LF generation circuit, the error-rate varies from 0.000589 to zero between 15% and 22% tolerance of tag responses. In conclusion, the error-rate is zero between 0%-22% tolerance of tag response specified in ISO/IEC 18000-6C standard.

Location Estimation Method using Extended Kalman Filter with Frequency Offsets in CSS WPAN (CSS WPAN에서 주파수 편이를 보상하는 확장 Kalman 필터를 사용한 이동노드의 위치추정 방식)

  • Nam, Yoon-Seok
    • The KIPS Transactions:PartC
    • /
    • v.19C no.4
    • /
    • pp.239-246
    • /
    • 2012
  • The function of location estimation in WPAN has been studied and specified on the ultra wide band optionally. But the devices based on CSS(Chirp Spread Spectrum) specification has been used widely in the market because of its functionality, cheapness and support of development. As the CSS device uses 2.4GHz for a carrier frequency and the sampling frequency is lower than that of the UWB, the resolution of a timestamp is very coarse. Then actually the error of a measured distance is very large about 30cm~1m at 10 m depart. And the location error in ($10m{\times}10m$) environment is known as about 1m~2m. So for some applications which require more accurate location information, it is very natural and important to develop a sophisticated post processing algorithm after distance measurements. In this paper, we have studied extended Kalman filter with the frequency offsets of anchor nodes, and proposed a novel algorithm frequency offset compensated extended Kalman filter. The frequency offsets are composed with a variable as a common frequency offset and constants as individual frequency offsets. The proposed algorithm shows that the accurate location estimation, less than 10cm distance error, with CSS WPAN nodes is possible practically.

Design of Low Voltage 1.8V, Wide Range 50∼500MHz Delay Locked Loop for DDR SDRAM (DDR SDRAM을 위한 저전압 1.8V 광대역 50∼500MHz Delay Locked Loop의 설계)

  • Koo, In-Jae;Chung, Kang-Min
    • The KIPS Transactions:PartA
    • /
    • v.10A no.3
    • /
    • pp.247-254
    • /
    • 2003
  • This paper describes a Delay Locked Loop (DLL) with low supply voltage and wide lock range for Synchronous DRAM which employs Double Data Rate (DDR) technique for faster data transmission. To obtain high resolution and fast lock-on time, a new type of phase detector is designed. The new counter and lock indicator structure are suggested based on the Dual-clock dual-data Flip Flop (DCDD FF). The DCDD FF reduces the size of counter and lock indicator by about 70%. The delay line is composed of coarse and fine units. By the use of fast phase detector, the coarse delay line can detect minute phase difference of 0.2 nsec and below. Aided further by the new type of 3-step vernier fine delay line, this DLL circuit achieves unprecedented timing resolution of 25psec. This DLL spans wide locking range from 500MHz to 500MHz and generates high-speed clocks with fast lock-on time of less than 5 clocks. When designed using 0.25 um CMOS technology with 1.8V supply voltage, the circuit consumes 32mA at 500MHz locked condition. This circuit can be also used for other applications as well, such as synchronization of high frequency communication systems.