• Title/Summary/Keyword: 동결과 융해

Search Result 847, Processing Time 0.032 seconds

A Study on the Mechanical Properties of Steel Fiber Reinforced Porous Concrete for Pavement Using Slag Aggregate and Fly Ash (슬래그골재와 플라이애시를 이용한 강섬유 보강 포장용 투수콘크리트의 역학적 특성에 관한 실험적 연구)

  • Park, Seung-Bum;Lee, Jun;Jang, Young-Il;Lee, Byung-Jae
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.93-104
    • /
    • 2007
  • This study evaluates the mechanical properties of steel fiber reinforced porous concrete for pavement according to content of slag aggregate and fly ash to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of slag aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of fly ash decreased. As fly ash was mixed, national regulation of permeable concrete for pavement(8% and 0.1 cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of slag aggregates increased, but they increased a lot as mixing rate of fly ash increased. Even when slag aggregates were mixed 50% with 5% fly ash mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, compared to non-mixture, flexural strength increased about 22.8% when 0.75vol.% of steel fiber was added. Regarding sliding resistance, BPN increased as mixing rate of slag aggregates increased. But BPN decreased as fly ash was mixed. Compared to crushed stone aggregates, abrasion resistance and fleers-thaw resistance decreased as mixing rate of slag aggregates increased. When fly ash was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, 10% mixture of fly ash improved abrasion resistance and freeze-thaw resistance about 5.6% and 14.3 respectively.

  • PDF

Effects of Semen Extender Containing Equex-STM Paste on Post-thaw Motility and Viability of Canine Sperm (Equex-STM paste 첨가 희석액이 개 정액의 동결.융해 후 정자활력 및 생존율에 미치는 영향)

  • 김용준;한종현;유일정;지동범
    • Journal of Veterinary Clinics
    • /
    • v.19 no.1
    • /
    • pp.80-85
    • /
    • 2002
  • This study was performed to investigate the freezomg condition especially focused on extender composition to achieve good post-thaw viability and motility of canine sperm. Semen were collected from 6 male dogs which had been proved to be fertile in the past and were treated for freezing. Equex-STM paste was contained in both the 1st(3%) and the 2nd(7%) diluent and the 2nd diluent was added to the 1st diluent following glycerol equilibration for an hour and a half. To investigate the effect of Equex-STM paste in the extender on post-thaw canine sperm characteristics, the post-thaw viability, motility, and HOS(Hypoosmotic swelling) values were evaluated according to the different composition of extender with or without Equex-STM paste, thawing conditions, and different thawing media added to thawed semen. 1. Canine sperm removed from seminal plasma and frozen )n Sweden extender containing Equex showed higher post-thaw viability, motility, and HOS values than those frozen in the extender containing Equex-STM paste with seminal plasma and those frozen in the extender without Equex and seminal plasma. 2. Canine sperm frozen in Sweden extender containing Equex-STM paste with 5% glycerol showed higher post-thaw viability, motility, and HOS values than those frozen with 3%, 8% glycerol or 5% DMSO. 3. The canine semen frozen in Sweden extender with 5% glycerol and Equex-STM paste showed higher viability, motility, and HOS values when thawed at $70^{\circ}C$ for 8 seconds than when thawed at $37.5^{\circ}C$ for 1 min and at $18-20^{\circ}C$ for 5 min. 4. TFC (tris -fructose-citrate) and PB S (phosphate buffered saline) medium added immediately to thawed canine semen brought better viability, motility, and HOS values for the sperm than those semen added with TGC(tris-glucose-citrate) and no medium. These results indicated that Equex-STM paste in Sweden extender for freezing the canine sperm which were removed from seminal plasma brought good post-thaw viability and motility of canine sperm. Also of the freezing conditions of canine sperm with the same extender containing Equex, the concentration of 5% glycerol, the thawing condition at $70^{\circ}C$ for 8 sec, and TFC and PBS medium added to the thawed semen brought better post-thaw viability and motility of canine sperm than the other conditions used in this study.

Study of Polymer Rapid Setting Cement Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 폴리머 속경성(速硬性) 시멘트 콘크리트 기초물성(基礎物性) 연구(硏究))

  • Jung, Won-Kyong;Gill, Yong-Soo;Kang, Seung-Hee
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.30-40
    • /
    • 2012
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace oxidizing slag to concrete aggregates(EFS). In this study, Electric arc furnace oxidizing slag is used in the PRCC(Polymer Rapid setting Cement Concrete) which is applied a bridge pavement of rehabilitation, largely. The results showed that the increment of compressive strength development by 10- 20%. The flexural strength of EFS-Con increased greatly as the electric arc furnace oxidizing slag changed. The compressive strength and flexural strength developed enough for opening the overlayed EFS-Con to the traffic after 4 hours of EFS-Con placement. The permeability of EFS-Con was evaluated as negligible due to its very low charge passed. Thus, EFS-Con could be used at repairing or overlaying the concrete at fast-track job sites.

Classification by Erosion Shapes and Estimation of Sea-cliff Erosion Rates through Field Survey in Dundu-ri, Anmyeondo in Korea's Western Coast (현장 조사를 통한 안면도 둔두리 해식애의 침식율 산정 및 침식형태 분류)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.41-53
    • /
    • 2013
  • This research was carried out to classify erosion shapes and sea-cliff erosion rates were estimated through periodic field survey in Dundu-ri, Anmyeondo. Based on the results of field measurements using the datum-point, the annual sea-cliff erosion rate was estimated about 25~102cm/yr by point. The erosion rate gradually increases from spring to summer, but tends to decrease slightly in autumn. Specifically, the erosion rate between June and July indicated a rather decreasing trend, but showed a sharp increase between July and September. This was attributed to erosion that proceeds more rapidly than during other periods due to severe rainstorms in summer that had a direct impact on the study area as well as storm surges caused by hurricanes. Afterwards, the sea-cliff erosion rate gradually decreased in autumn, but reflected an increasing trend again from December to January. This was attributed to the mechanical weathering that actively progresses as bed rocks on the sea-cliff undergo repeated freezing and thawing in winter. The seacliff in Dundu-ri is divided into three types according to the erosion shape. First, Type A is observed in the sea-cliff composed of the same bed rocks and hard rock stratum. Second, Type B is found in the sea-cliff with a relatively gentler slope compared to Type A, since weathering material including soil is formed on the surface of the sea-cliff consisting of the same bed rocks and hard rock stratum. Lastly, Type C is observed in the sea-cliff where hard rock stratum is mixed with soft rock stratum. In this case, the soft rock stratum slumps and erodes first by precipitation and wave energy, followed by additional slumping of the exposed hard rock stratum.

Performance Characteristics of No-Fines Polymer Concrete using Recycled Coarse Aggregate with Binder Contents (결합재의 함량에 따른 순환굵은골재 사용 무세골재 폴리머 콘크리트의 성능 발현 특성)

  • Kim, Do-Heon;Jung, Hyuk-Sang;Kim, Dong-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.433-442
    • /
    • 2021
  • In this study, the properties of no-fines polymer concrete with different polymer binder contents were evaluated. The polymer concrete was formulated using a polymeric binder (unsaturated polyester resin), fly ash, and recycled coarse aggregate (60%) and crushed coarse aggregate (40%). The polymeric binder content (4.0-6.0wt.%) was used as an experimental variable because it dramatically affects both the cost-effectiveness and material properties. The results showed that the density, compressive strength, flexural strength both before and after exposure to freezing and thawing increased as the polymer binder content increased, while the absorption, void ratio, permeable voids, coefficient of permeability, and acid resistance (mass loss by acid attack) decreased as the polymeric binder content increased. In particular, even though the void ratio was 18.4% and the water permeability coefficient was 7.3mm/sec, the compressive strength and flexural strength were as high as 38.0MPa and 10.0MPa, respectively, much more significant than those of previous studies. Other properties such as absorption and acid resistance were also found to be excellent. The results appear to be rooted in the increased adhesion of the binder by adding a cross-linking agent and the surface hydrophobicity of the polymer.

Field Application and Maintenance of sidewalk concrete block for PV Power Generation (태양광 발전을 위한 보도형 콘크리트 블록의 현장 적용과 유지관리)

  • Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.75-83
    • /
    • 2019
  • In order to fulfill the obligation to voluntarily reduce greenhouse gas emissions under the Paris Climate Agreement, the proportion of coal and nuclear power generation is reduced worldwide and national efforts are being made to spread renewable energy including solar power generation. Korea also intends to increase the proportion of renewable energy generation to 30~35% by 2040 by introducing laws and regulations. In addition, while the country is trying to apply solar power generation to sidewalks and roads, there is no research related to it in Korea. Therefore, as a precedent study to develop solar power generation roads, solar power generation concrete blocks applicable to sidewalks and plazas were developed and the applicability was evaluated by constructing them on the site. As a result of indoor experiment, compressive strength was measured by 25.5~35.7MPa and flexural strength was measured by 5.1~10.5MPa, which showed that all domestic standards were satisfied. However, the higher the unit cement amount, the lower the strength was measured according to the mixing of the broken fine aggregate. The absorption rate was 5.7%, which satisfied the domestic standard of 7% or less. As a result of the freeze-thawing test, the reduction rate of the compressive strength after 100 cycles was up to 6.3%. As a result of measuring the settlement amount after construction, the maximum of 2.498mm was measured and irregular settlement occurred in the overall area, which is because the resolution of the sand layer was poor during construction. Maintenance techniques of sidewalk concrete block and solar panel need to be established more efficiently through long-term operation in the further.

Evaluation for Long Term Drying Shrinkage and Resistance to Freezing and Thawing of Hybrid Fiber Reinforced Concrete (하이브리드 섬유보강 콘크리트의 장기 건조수축 및 내동해성 평가)

  • Kim, Yo-Seb;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.60-66
    • /
    • 2019
  • Many researches have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Researches on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. Therefore, the purpose of this research is to estimate the compressive strength, long term drying shrinkage, and resistance to freezing and thawing of hybrid fiber reinforced concrete(HFRC) using amorphous steel fiber and polyamide fiber as one of organic fibers. For this purpose, HFRCs containing amorphous steel fiber and polyamide fiber were made according to their total volume fraction of 1.0% for target compressive strength of 40 and 60 MPa, respectively, and then the compressive strength, length change, and resistance to freezing and thawing of these were evaluated. As a result, the long term length change ratio of HFRC used in this study decreased by more than 30%, 25% than plain concrete at 365 and 730 days, respectively, and the durability factor of HFRC was very excellent as more than 90%.

Evaluation of Durability Performance in Concrete Incorporating Low Fineness of GGBFS (3000 Grade) (저분말도 고로슬래그 미분말(3000급)을 혼입한 콘크리트의 내구성능평가)

  • Lee, Seung-Heun;Cho, Sung-Jun;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.96-102
    • /
    • 2019
  • When GGBFS(Ground Granulated Blast Furnace Slag) with high blaine is incorporated in concrete, compressive strength in the initial period is improved, but several engineering problems arise such as heat of hydration and quality control. In this paper, compressive strength and durability performance of concrete with 3,000 Grade-low fineness slag are evaluated. Three conditions of concrete mixtures are considered considering workability, and the related durability tests are performed. Although the strength of concrete with 3,000 Grade slag is slightly lower than the OPC(Ordinary Portland Cement) concrete at the age of 28 days, but insignificant difference is observed in long-term compressive strength due to latent hydration activity. The durability performances in concrete with low fineness slag show that the resistances to carbonation and freezing/thawing action are slightly higher than those of concrete with high fineness slag, since reduced unit water content is considered in 3,000 Grade slag mixture. For the long-term age, the chloride diffusion coefficient of the 3000-grade slag mixture is reduced to 20% compared to the OPC mixture, and the excellent chloride resistance are evaluated. Compared with concrete with OPC and high fineness GGBFS, concrete with lower fineness GGBFS can keep reasonable workability and durability performance with reduced water content.

Effect of Maximum Aggregate, Porosity, and Temperature on Crack Resistance and Moisture Susceptibility of Porous Asphalt Mixtures (최대입경, 공극률, 온도가 다공성 아스팔트 혼합물의 균열저항성 및 수분민감성에 미치는 영향)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Park, Ki-Soo;Yoon, Kang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.611-619
    • /
    • 2021
  • Porous asphalt pavement (PAP) has many functions, such as reducing accidents and decreasing noise. On the other hand, vulnerability is inevitable because PAP contains approximately 20% porosity. This study evaluated the effects of the maximum aggregate size (MAS), temperature, and porosity on the PAP durability. The indirect tensile strength measures durability. This study tested the samples that stayed dry and were moisturized by freezing and thawing for mixtures having the same porosity of 20% and MAS of 13mm, 10mm, and 8mm. The same test was performed on a mixture of 20% and 22% voids made of the same material with a MAS of 10mm. As a result, for 20% porosity, significant differences in the changes in MAS and temperature were found. A clear difference was observed between 8mm and 13mm under dry conditions, but there were no other significant differences in the MAS change. Furthermore, there was a clear difference in temperature for the change in porosity and temperature, but the gap in 2% porosity at 20% did not show a clear difference. Therefore, it is necessary to develop a more durable PAP through quantitative evaluations of the factors affecting the PAP durability.

Change in Mineralogical Characteristics of the Laminated Diatomaceous Siliceous Mudstone by the Treatment of Consolidants (엽층리가 발달된 규조토성 규질이암의 강화제에 의한 광물학적 특성변화)

  • Do, Jin Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.51-64
    • /
    • 2022
  • For effective preservation of the rocks, which bearing plant fossils at Gumkwangdong Formation, Pohang, the properties of rock and treatment of chemicals were examined in an artificial weathering test. The rocks are diatomaceous siliceous mudstone, which contain a small amount of smectite and has developed laminated layers. The rocks react with water, the d001 spacing of smectite was increased. On the one hand, the physical properties of the rock samples, such as surface hardness, improved after the application of ethyl silicate-based stone strengthener. On the other hand, the spacing of interlayer of swelling clay minerals decreased and spacing of laminae layer increased. When the ethyl silicate-based stone strengthener was applied after pretreatment with a swelling inhibitor, interlayer and spacing of laminae changes were similar to those when only the stone strengthener was treated. The effect of the swelling inhibitor was almost negligible. When the rocks that have been conserved with chemicals react with water, spacing of laminae has widened much, whereas when the rocks was in contact with moisture only, there was little change. In addition, if it is placed in the outdoor after conservation treatment, although it occurs slightly slower than the untreated rock, the separation of the lamination layer and the pulverization of the rock occur within a very short time. Consolidation is required to improve the physical properties of fossil rock, but when exposed to rain and undergoing freeze-thaw process, the effect is lost very quickly. Therefore, regardless of the chemical treatment, it is a priority to prevent direct rainfall contact with the rock.