• Title/Summary/Keyword: 돌로마이트

Search Result 78, Processing Time 0.026 seconds

The origin of the dolomite of the Pungchon Formation near Taebaeg City, Kangwondo, Korea (강원도 태백시 일대에 분포하는 풍촌층 돌로마이트의 성인)

  • Lim Seong-Weon;Woo Kyung Sik
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.28-39
    • /
    • 1995
  • The objective of this study is to investigate the origin of the dolomite in the Pungchon Formation of the Choseon Supergroup near Taebaeg City, Kangwondo, Korea. The Pungchon Formation is composed of limestone, dolomitic limestone, and dolomite with thin beds of flat pebble conglomerate (FPC) and mudrock. Texturally, the dolomite in the Pungchon Formation can be divided into four types; 1) coarse-sized, xenotopic dolomite in massive dolomite, 2) medium-siEed, idiotopic dolomite in flat pebble conglomerate, 3) xenotopic dolomite replacing ooids, algalnodules, and echinoderms, and 4) the dolomite in mottled fabric. The dolomite in mottled fabric can be subdivided into three types; a) coarse-sized, xenotopic saddle dolomite cement, b) medium-sized, idiotopic, cloudy-centered, clear-rimmed (CCCR) dolomite, and c) coarse-sized, idiotopic dolomite. The carbon isotopic composition of the Pungchon dolomite is in the range of $-2.8-1.4\%_{\circ}(PBD)$, suggesting that the carbon isotopic composition was buffered by the preexisting marine carbonates. Lighter oxygen isotopic values ($\delta^{18}O-15.7-8.7\%_{\circ}, PBD$) indicate that the Pungchon dolomite may have formed under high temperature in a burial diagenetic environment. The higher initial $^{87}Sr/^{86}Sr$ ratio of the Pungchon dolomite (0.7010-0.7161) than that of the coeval Cambrian seawater (0.7088-0.7092) indicates that dolomitizing fluids had been modified from the isotopic exchange with continental crust. Low Sr and Na contents(<200 ppm) of dolomite agree well with previously reported data for burial dolomite. Hifh Fe and Mn contents of the dolomite support the idea that the Pungchon dolomite may have formed in a deep burial diagenetic environment.

  • PDF

Corrosion Behavior of Dolomite Clinkers by Slag (Slag에 의한 돌로마이트 클링커의 침식거동)

  • 박재원;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.30-35
    • /
    • 1999
  • For dolomite clinkers used as stamp materials, the corrostion behavior of those by slag was inverstigated between 1550$^{\circ}C$ and 1650$^{\circ}C$. Fe2O3 among slag components was selectively penetrated into the grain boundaries of dolomite clinkers. In hot face, the magnesioferrite was preferentially formed by Fe2O3 component contained in dolomite clinker rather than Fe2O3 of slag. The corrosion steps of dolomite clinkers by slag were found as follows ; (1) The dicalciumferrite was formed by the reaction of the calcia within dolomite clinkers with Fe2O3 of slag. (2) The magnesia within dolomite clinkers reacted with the dicalciumferrite to from magnesioferrite and the residual calcia within dolomite clinkers reacted with the dicalciumferrite to form magnesioferrite and the residual calcia was dissolved into slag. (3) The magnesioferrite was corroded by CaO-SiO2 compounds of slag. With the temperature of slag increased, the magnesioferrite layer in hot face was decreased for dolomite clinker without Fe2O3 while the layer thickness and grain sizes of magnesioferrite was increased for dolomite clinker with Fe2O3.

  • PDF

Occurrence and Chemical Composition of Dolomite from Zhenzigou Pb-Zn Deposit, China (중국 젠지고우 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.177-191
    • /
    • 2021
  • The Zhenzigou Pb-Zn deposit, one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. Based on mineral petrography and paragenesis, dolomites from this deposit are classified three type (1. dolomite (D0) as hostrock, 2. dolomite (D1) in layer ore associated with white mica, quartz, K-feldspar, sphalerite, galena, pyrite, arsenopyrite from greenschist facies, 3. dolomite (D2) in vein ore associated with quartz, apatite and pyrite from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.03Mg0.94-0.98Fe0.00-0.06As0.00-0.01(CO3)2(D0), Ca0.97-1.16Mg0.32-0.83Fe0.10-0.50Mn0.01-0.12Zn0.00-0.01Pb0.00-0.03As0.00-0.01(CO3)2(D1), Ca1.00-1.01Mg0.85-0.92Fe0.06-0.11 Mn0.01-0.03As0.01(CO3)2(D2), respectively. It means that dolomites from the Zhenzigou deposit have higher content of trace elements compared to the theoretical composition of dolomite. Feo and MnO contents of these dolomites (D0, D1 and D2) contain 0.05-2.06 wt.%, 0.00-0.08 wt.% (D0), 3.53-17.22 wt.%, 0.49-3.71 wt.% (D1) and 2.32-3.91 wt.%, 0.43-0.95 wt.% (D2), respectively. The dolomite (D1) from layer ore has higher content of these trace elements (FeO, MnO, ZnO and PbO) than dolomite (D0) from hostrock and dolomite (D2) from quartz vein. Dolomites correspond to Ferroan dolomite (D0 and D2), and ankerite and Ferroan dolomite (D1), respectively. Therefore, 1) dolomite (D0) from hostrock is a Ferroan dolomite formed by marine evaporative lagoon environment in Paleoproterozoic Jiao Liao Ji basin. 2) Dolomite (D1) from layer ore is a ankerite and Ferroan dolomite formed by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. 3) Dolomte (D2) from quartz vein is a Ferroan dolomite formed by hydrothermal fluid origined Mesozoic intrusion.

Element Dispersion by the Wallrock Alteration of Janggun Lead-Zinc-Silver Deposit (장군 연-아연-은 광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.623-641
    • /
    • 2012
  • The Janggun lead-zinc-silver deposit is hydrothermal-metasomatic deposit. We have sampled wallrock, hydrother-maly-altered rock and lead-zinc-silver ore vein to study the element dispersion during wallrock alteration. The hydrothermal alteration that is remarkably recognized at this deposit consists of rhodochrositization and dolomitization. Wallrock is dolomite and limestone that consisit of calcite, dolomite, quartz, phlogopite and biotite. Rhodochrosite zone occurs near lead-zinc-silver ore vein and include mainly rhodochrosite with amounts of calcite, dolomite, kutnahorite, arsenopyrite, pyrite, chalcopyrite, sphalerite, galena and stannite. Dolomite zone occurs far from lead-zinc-silver ore vein and is composed of mainly dolomite and minor calcite, rhodochrosite, pyrite, sphalerite, chalcopyrite, galena and stannite. The correlation coefficients among major, trace and rare earth elements during wallrock alteration show high positive correlations(dolomite and limestone = $Fe_2O_3(T)$/MnO, Ga/MnO and Rb/MnO), high negative correlations(dolomite = MgO/MnO, CaO/MnO, $CO_2$/MnO, Sr/MnO; limestone = CaO/MnO, Sr/MnO). Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, MnO, As, Au, Cd, Cu, Ga, Pb, Rb, Sb, Sc, Sn and Zn. Remarkable loss elements are CaO, $CO_2$, MgO and Sr. Therefore, elements(CaO, $CO_2$, $Fe_2O_3(T)$, MgO, MnO, Ga, Pb, Rb, Sb, Sn, Sr and Zn) represent a potential tools for exploration in hydrothermal-metasomatic lead-zinc-silver deposits.

Occurrence and Chemical Composition of Dolomite from Komdok Pb-Zn Deposit (검덕 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • The Komdok Pb-Zn deposit, which is the largest Pb-Zn deposit in Korea, is located at the Hyesan-Riwon metallogenic zone in Jiao Liao Ji belt included Paleoproterozoic Macheolryeong group. The geology of this deposit consists of Paleoproterozoic metasedimentary rocks, Jurassic Mantapsan intrusive rocks and Cenozoic basalt. The Komdok deposit which is a SEDEX type deposit occurs as layer ore and vein ore in the Paleoproterozoic metasedimentary rocks. Based on mineral petrography and paragenesis, dolomites from this deposit are classified four types (1. dolomite (D0) as hostrock, 2. early dolomite (D1) associated with tremolite, actinolite, diopside, sphalerite and galena from amphibolite facies, 3. late dolomite (D2) associated with talc, calcite, quartz, sphalerite and galena from amphibolite facies, 4. dolomite (D3) associated with white mica, chlorite, sphalerite and galena from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.20Mg0.80-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D0), Ca1.00-1.02M0.97-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D1), Ca0.99-1.03Mg0.93-0.98Fe0.01-0.05Mn0.00-0.01As0.00-0.01(CO3)2(D2) and Ca0.95-1.04Mg0.59-0.68Fe0.30-0.36Mn0.00-0.01 (CO3)2(D3), respectively. It means that dolomites from Komdok deposit have higher content of trace elements (FeO, MnO, HfO2, ZnO, PbO, Sb2O5 and As2O5) compared to the theoretical composition of dolomite. These trace elements (FeO, MnO, ZnO, Sb2O5 and As2O5) show increase and decrease trend according to paragenetic sequence, but HfO2 and PbO elements no show increase and decrease trend according to paragenetic sequence. Dolomites correspond to Ferroan dolomite (D0, D1 and D2), and Ferroan dolomite and ankerite (D3), respectively. Therefore, 1) dolomite (D0) as hostrock was formed by subsequent diagenesis after sedimentation of Paleoproterozoic (2012~1700 Ma) silica-bearing dolomite in the marine evaporative environment. 2) Early dolomite (D1) was formed by hydrothermal metasomatism origined metamorphism (amphibolite facies) associated with intrusion (1890~1680 Ma) of Paleoproterozoic Riwon complex. 3) Late dolomte (D2) was formed from residual fluid by a decrease of temperature and pressure. and dolomite (D3) in quartz vein was formed by intrusion (213~181 Ma) of Jurassic Mantapsan intrusive rocks.

Mineralogical, Micro-textural, and Geochemical Characteristics for the Carbonate Rocks of the Lower Makgol Formation in Seokgaejae Section (석개재 지역 하부 막골층 탄산염암의 광물조성, 미세구조 및 지화학적 특성)

  • Park, Chaewon;Kim, Ha;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.323-343
    • /
    • 2018
  • This study defines the mineralogical, micro-textural and geochemical characteristics for the carbonate rocks and discusses the fluids that have affected the depositional environment of the Lower Makgol Formation in Seokgaejae section. Based on analysis of X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-ray Spectrometry (SEM-EDS), Electron Probe Micro Analyzer-Wavelength Dispersive X-ray Spectrometry (EPMA-WDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), carbonate miorofacies in the basal and the lower members of the Makgol Formation are distinguished and classified into four types. Type 1 dolomite (xenotopic interlocking texture) and Type 2 dolomite (idiotopic interlocking texture) have relatively high Mg/Ca ratio, flat REE pattern, low Fe and Mn. Extensively interlocking textures in these dolomites indicate constant supply of Mg ion from hypersaline brine. Type 3 and Type 4 dolomite (scattered and loosely-aggregated texture) have relatively moderate Mg/Ca ratio, MREE enriched pattern, low to high Fe and Mn. These partial dolomitization indicate limited supply of Mg ion under the influx of meteoric water with seawater. Also, the evidence of Fe-bearing minerals, recrystallization and relatively high Fe and Mn in Type 4 indicates the influence of secondary diagenetic fluids under suboxic conditions. Integrating geochemical data with mineralogical and micro-textural evidence, the discrepancy between the basal and the lower members of the Makgol Formation indicates different sedimentary environment. It suggest that hypersaline brine have an influence on the basal member, while mixing meteoric water with seawater have an effect on the lower member of the Makgol Formation.

Corrosion Behavior of Dolomite Clinkers by Molten Steel (용강에 의한 돌로마이트 클링커의 침식거동)

  • 박재원;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1301-1307
    • /
    • 1998
  • For dolomite clinkers used as stamp materials the corrosion behavior of those by molten steel was investigated in therange of temperatures between 1550$^{\circ}C$ and 1600$^{\circ}C$ IN hot face the dicalciumferrite of magnesioferrite and dicalciumferrite formed within dolomite clinkers was preferentially dissolved into molten steel and the protective layer of magnesioferrite was formed. For dolomite clinker without Fe2O3 magnesioferrite maintained the skeleton of MgO while the skeleton of CaO disappered bythe formation of dicalciumferrite and it existed as grain boundary phases of magnesioferrite. For dolomite clinker with Fe2O3 was diffused into hot face by the decomposition of dicalciumferrite. With increasing temperature of molten steel the formation depth of dicalciumferrite was increased and the magnesioferrite layer in hot face was decreased for dolomite clinker without Fe2O3 while the layer thickness and grain sizes of magnesioferrite in hot face was decreased for dolomite clinker without Fe2O3 while the layer thickness an grain sizes of magnesioferrite in hot face was increased due to the increment of the decomposition reaction of dicalciumferrite for dolomite clinker with Fe2O3.

  • PDF

Occurrence and Chemical Composition of Dolomite and Chlorite from Xiquegou Pb-Zn Deposit, China (중국 Xiquegou 연-아연 광상의 돌로마이트와 녹니석 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.125-140
    • /
    • 2022
  • The Xiquegou Pb-Zn deposit is located at the Qingchengzi orefield which is one of the largest Pb-Zn mineralized zone in the northeast of China. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Xiquegou deposit which is a Triassic magma-hydrothermal type deposit occurs as vein ore filled fractures along fault zone in unit 3 (dolomitic marble and schist) of Dashiqiao formation of the Paleoproterozoic Liaohe group. Xiquegou Pb-Zn deposit consists of quartz, apatite, calcite, pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, stannite, galena, tetrahedrite, electrum, argentite, native silver and pyrargyrite. Wallrock alteration of this deposit contains silicification, pyritization, dolomitization, chloritization and sericitization. Based on mineral petrography and paragenesis, dolomites from this deposit are classified two type (1. dolomite (D0) as wallrock, 2. dolomite (D1) as wallrock alteration in Pb-Zn mineralization quartz vein ore). The structural formulars of dolomites are determined to be Ca1.03-1.01Mg0.95-0.83Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) and Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1), respectively. It means that dolomites from the Xiquegou deposit have higher content of trace elements compared to the theoretical composition of dolomite. The dolomite (D1) from quartz vein ore has higher content of these trace elements (FeO, PbO, Sb2O5 and As2O5) than dolomite (D0) from wallrock. Dolomites correspond to Ferroan dolomite (D0), and ankerite and Ferroan dolomite (D1), respectively. The structural formular of chlorite from quartz vein ore is (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8. It indicated that chlorite of quartz vein ore is similar with theoretical chlorite and corresponds to Fe-rich chlorite. Compositional variations in chlorite from quartz vein ore are caused by mainly octahedral Fe2+ <-> Mg2+ (Mn2+) substitution and partly phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV).

Phase equilibria between coexisting minerals in the talc ores and process of talc formation in the Daeheung Talc Deposits, Korea (대흥활석광상에 있어서 공존하는 광물의 상평형과 활석화 과정)

  • 이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.156-170
    • /
    • 1994
  • The talc ore deposits can be divided into chloritic and dolomitic ores according to mineral assemblages. The former is mainly composed of chlorite and talc accompanied with dolomite, muscovite and opaque mineral, and the latter of dolomite and talc with serpentine, calcite and magnesite in places. Talc was originated from chlorite and serpentine. Carbonate minerals were formed either directly from the introduced hydrothermal solution or secondarily as a by-product of steatitization of chlorite and serpentine. The process of talc formation may be governed by the chemical composition of the host rocks and the amount and/or chemical composition of the hydrothermal solution which may be different in places. However, the representative reactions producing talc from chlorite and serpentine are as follows : (1) chlorite+$Mg^{++}+Si^{4+}+H_2O$=talc, (2) chlorite+$Mg^{++}+Si^{4+}+Ca^{++}+CO_2+O_2+H_2O$=talc+ dolomite+ magnesite, and (3) serpentine +$Mg^{++}+Fe^{++}+Si^{4+}+Ca^{++}+CO_2+H_2O$=talc+dolomite. The reactions indicate that the carbonate minerals can be formed when the hydrothermal solution have high $fO_2$ and $fCO_2$. The steatitization might be proceeded by the hydrothermally metasomatic reaction between chlorite schist or chlorite gneiss intercalated in the granitic gneiss and hydrothermal solution accompanied to the wet granitization.

  • PDF

Geochemical Characteristics of Devonian Bitumen Carbonates in Alberta, Canada (캐나다 데본기 비투멘 탄산염암의 지화학적 특성 연구)

  • Kil, Young-Woo;Kim, Ji-Hoon;Choi, Ji-Young;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.365-375
    • /
    • 2012
  • The objective of this study is to investigate inorganic characteristics of Devonian bitumen carbonates in Alberta using two drilling cores, Saleski 03-34-88-20w4 and Saleski 08-01-88-20w4, taken from the Core Research Center (CRC) of Canada. The bitumen carbonates are mainly composed of less than 0.2 mm dolomites and some carbonate includes small amount of quartz and calcite. The bitumen carbonates from two cores are interpreted to have formed in similar sedimentary environments and dolomitization processes. Carbonates from Saleski 03-34-88-20w4 core were formed under higher inflow of clastic sediment than those from Saleski 08-01-88-20w4 core. Range of crystallization temperature of dolomites in the both bitumen carbonate cores is about 40~$55^{\circ}C$. Dolomitizing fluid of the bitumen carbonates would be Devonian seawater. Bitumen carbonates from Cairn Formation, compared with the CRC cores, have experienced a similar crystallization temperature, but dolmititizing fluid of the bitumen carbonates from Cairn Formation have been modified from the isotopic exchange with continental crust.