Browse > Article
http://dx.doi.org/10.9719/EEG.2018.51.4.323

Mineralogical, Micro-textural, and Geochemical Characteristics for the Carbonate Rocks of the Lower Makgol Formation in Seokgaejae Section  

Park, Chaewon (Department of Earth System Sciences, Yonsei University)
Kim, Ha (Department of Earth System Sciences, Yonsei University)
Song, Yungoo (Department of Earth System Sciences, Yonsei University)
Publication Information
Economic and Environmental Geology / v.51, no.4, 2018 , pp. 323-343 More about this Journal
Abstract
This study defines the mineralogical, micro-textural and geochemical characteristics for the carbonate rocks and discusses the fluids that have affected the depositional environment of the Lower Makgol Formation in Seokgaejae section. Based on analysis of X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-ray Spectrometry (SEM-EDS), Electron Probe Micro Analyzer-Wavelength Dispersive X-ray Spectrometry (EPMA-WDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), carbonate miorofacies in the basal and the lower members of the Makgol Formation are distinguished and classified into four types. Type 1 dolomite (xenotopic interlocking texture) and Type 2 dolomite (idiotopic interlocking texture) have relatively high Mg/Ca ratio, flat REE pattern, low Fe and Mn. Extensively interlocking textures in these dolomites indicate constant supply of Mg ion from hypersaline brine. Type 3 and Type 4 dolomite (scattered and loosely-aggregated texture) have relatively moderate Mg/Ca ratio, MREE enriched pattern, low to high Fe and Mn. These partial dolomitization indicate limited supply of Mg ion under the influx of meteoric water with seawater. Also, the evidence of Fe-bearing minerals, recrystallization and relatively high Fe and Mn in Type 4 indicates the influence of secondary diagenetic fluids under suboxic conditions. Integrating geochemical data with mineralogical and micro-textural evidence, the discrepancy between the basal and the lower members of the Makgol Formation indicates different sedimentary environment. It suggest that hypersaline brine have an influence on the basal member, while mixing meteoric water with seawater have an effect on the lower member of the Makgol Formation.
Keywords
Seokgaejae; Makgol Formation; Carbonate rock; Dolomite; Micro-texture;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chakhmouradian, A.R., Reguir, E.P., Coueslan, C. and Yang, P. (2016) Calcite and dolomite in intrusive carbonatites : II. Trace-element variations. Mineralogy and Petrology, v.110, p.361-377.   DOI
2 Cheong, C.H. (1969) Stratigraphy and paleontology of the Samcheog coalfield, Gangweondo, Korea (1). Journal of the Geological Society of Korea, v.5, p.13-56.
3 Choi, D.K. (1998) The Yongwol Group (Cambrian-Ordovician) redefined: a proposal for the stratigraphic nomenclature of the Choson Supergroup. Geosciences Journal, v.2, p.220-234.   DOI
4 Choi, D.K., Chough, S.K., Kwon, Y.K. et al. (2004) Taebaek Group (Cambrian-Ordovician) in the Seokgaejae section, Taebaeksan Basin : a refined lower Paleozoic stratigraphy in Korea. Geosciences Journal, v.8, p.125-151.   DOI
5 Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and Sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Reviews, v.52, p.175-235.   DOI
6 Chung, G.S., Paik, I.S. and Woo, K.S. (1993) The Origin of Dolomites in the Lower Ordovician Mungok Formation in the Yeongweol Area, Kangweondo, Korea. Journal of the Geological Society of Korea, v.29, p.1-14.
7 Conliffe, J., Azmy, L., Knight, I. and Lavoiec, D. (2009) Dolomitization of the Lower Ordovician Watts Bight Formation of the St. George Group, western Newfoundland: evidence of hydrothermal fluid alteration. Canadian Journal of Earth Sciences, v.46, p.247-261.   DOI
8 Dunham, J.B. and Olson, E.R. (1978) Diagenetic dolomite formation related to Paleozoic paleogeography of the Cordilleran miogeocline in Nevada. Geology, v.6(9), p.556-559.   DOI
9 Eluik, L.S. (1978) The Abenaki Formation, Nova Scotia Shelf, Canada-A Depositional and Diagenetic Model for a Mesozoic Carbonate Platform. Bulletin of Canadian Petroleum Geology, v.26, p.424-514.
10 Fischer, A.G. (1975) Tidal deposits, Dachstein Limestone of the North-Alpine Triassic. In: Ginsburg, R.N. (eds) Tidal Deposits. Springer, Berlin, Heidelberg, p.235-242.
11 Frimmel, H.E. (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, v.258(3-4), p.338-353.   DOI
12 GICTR (Geological Investigation Corps of the Taebaegsan Region) (1962) Report on the Geology and Mineral Resources of the Taebaegsan Region. Geological Society of Korea, Seoul, p.89.
13 Goodwin, R.W., Anderson, E.J., Goodman, W.M. and Saraka, L.J. (1986) Punctuated aggradational cycles: implications for stratigraphic analysis. Paleoceanography, v.1, p.417-429.   DOI
14 Gregg, J.M. and Sibley, D.F. (1984) Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Petrology, v.54, p.908-931.
15 Huaguo, W., Longbun, W., Haoru, C., Rongcai, Z., Lurui, D. and Yanan, L. (2014) Geochemical characteristics and diagenetic fluids of dolomite reservoirs in the Huanglong Formation, Eastern Sichuan Basin, China. Pet.Sci. v.11, p.52-66.   DOI
16 Hardie, L.A. (1987) Dolomitization: a critical view of some current views. J. Sediment. Petrology, v.57, p.166-182.   DOI
17 Hass, D. and Demeny, A. (2002) Early dolomitization of Late Triassic platform carbonates in the Transdanubian Range (Hungary). Sedimentary Geology, v.151, p.225-242.   DOI
18 Hoffman, P. (1975) Shoaling-upward shale-to-dolomite cycles in the Rocknest Formation (Lower Proterozoic), Northwest Territories, Canada. In: Ginsburg, R.N. (eds), Tidal Deposits. Springer, Berlin, Heidelberg, p.257-265.
19 Huang, S.J. (2010) Carbonate Diagenesis. Geological Publishing, p.29-44.
20 Murray, R.C. and Lucia, F.J. (1967) Cause and Control of Dolomite Distribution by Rock Selectivity. GSA Bulletin, v.78(1), p.21-36.   DOI
21 Olanipekun, B.J. and Azmy, K. (2017) In situ characterization of dolomite crystals: Evaluation of dolomitization process and its effect on zoning. Sedimentology, p.1-23.
22 Paik, I.S. (1985) Evaporite mineral casts in the Maggol Formation (Ordovician), Jangseong, Kangweondo. Journal of Geologial Society of Korea, v.21, p.219-226.
23 Paik. I.S. (1986) Dolomitization of the Middle Ordovician Maggol Formation in Janseong area, Gangweondo, Korea. Journal of the Geological Society of Korea, v.22, p.333-346.
24 Paik, I.S. (1987) Depositional environments of the Middle Ordovician Maggol Foremation, southern part of the Baegunsan Syncline area. Journal of Geological Society of Korea, v.23, p.360-373.
25 Sears, S.O. and Lucia, F.J. (1980) Dolomitization of northern Michigan Niagara reefs by brine refluxion and freshwater/seawater mixing: in Zenger, D.H., Dunham J.B. and Ethington, R.L. eds., Concepts and Models of Dolomitization. Soc. Econ. Paleontol. Mineral. Spec. Publication, v.28, p.215-235.
26 Pearce, N.J.G., Perkins W.T., Westgate, J.A., Gorton, P.M., Jackson, S.E., Neal, C.R. and Chenery, P.S. (1997) A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandard and Geoanalytical research, v.21(1), p.115-144.   DOI
27 Pratt, B.R., James, N.P. and Cowan, C.A. (1992) Peritidal carbonates. In: Walker, R.G. and James, N.P. (eds.) Facies Models response to sea level change. Geological Association of Canada, p.303-322.
28 Reinhold, C. (1998) Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, v.121, p.71-95.   DOI
29 Sibley, D.F. and Gregg, J.M. (1987) Classification of dolomite rock textures. Journal of Sedimentary Petrology, v.57, p. 967-975.
30 Sena, C.M., John, C.M., Jourdan, A., Vandeginste, V. and Manning, C. (2014) Dolomitization of lower Cretaceous peritidal carbonates by modified seawater: constrains from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes. Journal of Sedimentary Research, v.84, p.552-566.   DOI
31 Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Oxford (Blackwell Scientific).
32 Tucker, M.E. and Wright, V.P. (1990) Carbonate sedimentology. Blackwell, Oxford.
33 Wolfbauer, C.A. and Surdam, R.C. (1974) Origin of nonmarine dolomite in Eocene Lake Gosiute, Green River Basin, Wyoming. Geological Society of America Bulletin, v.85(11), p.1733-1740.   DOI
34 Vandeginste, V. and John C.M. (2012) Influence of climate and dolomite composition on dedolomitization: insights from a multi-proxy study in the central Oman Mountains. Journal of Sedimentary Research, v.82(3), p.177-195.   DOI
35 Warren, J. (2000) Dolomite: Occurrence, Evolution and Economically Important Associations. Earth Science Reviews, v.52, p.1-81.   DOI
36 Wilson, J.G. (1975) Carbonate facies in geologic history. Springer Verlag, New York, N.Y., p.471.
37 Woo, K.S. (1999) Cyclic tidal successions of the Middle Ordovician Maggol Formation in the Taebaeg area, Kangwondo, Korea. Geosciences Journal, v.3, p.123-140.   DOI
38 Woo, K.S. and Choi, S.J. (1993) Diagenetic histories of the Yeongheung Formation near Machari area, Yeongweol, Kangweondo, Korea. Journal of the Geological Society of Korea, v.29, 450-463.
39 Woo, K.S. and Park, B.K. (1989) Depositional environments and diagenesis of the sedimentary rocks, Choseon Supergroup, Korea: past, present, and future; the state of the art. Journal of the Geological Society of Korea, v.25, p.347-363.
40 Woo, K.S. and Moore, C.H. (1996) Burial dolomitization and dedolomitization of the late Cambrian Wagok Formation, Yeongweol, Korea. Carbonates Evaporites, v.11(2), p.104-112.   DOI
41 Wright, V.P. (1984) Peritidal carbonate facies models: a review. Geological Journal, v.19, p.309-325.
42 Ye, Q. and Mazzullo, S.J. (1993) Dolomitization of lower Permian platform facies, Wichita Formation, north platform, Midland basin, Texas. Carbonates and Evaporites, v.8(1), p.55-70.   DOI
43 Yoo, C.M. and Lee, Y.I. (1998) Origin and modification of early dolomites in cyclic shallow platform carbonates, Yeongheung Formation (Middle Ordovician), Korea. Sedimentary Geology, v.118, p.141-157.   DOI
44 Zhang, W., Guan, P., Jian, X., Feng, F. and Zou, C. (2014) In situ geochemistry of Lower Paleozoic dolomites in the northwestern Tarim basin: Implications for the nature, origin, and evolution of diagenetic fluids. Geochemistry, Geophysics, Geosystems, v.15, p.2744-2764.   DOI
45 Kobayashi, T. (1966) The Cambro-Ordovician formations and faunas of South Korea, Part X, Stratigraphy of the Chosen Group in Korea and South Manchuria and its relation to the Cambro-Ordovician formations and faunas of other areas, Section A, The Chosen Group of South Korea. Journal of the Faculty of Science (University of Tokyo), Section II, v.16, p.1-84.
46 Kucera, J., Cempirek, J., Dolnicek, Z., Muchez, P. and Prochaska, W. (2009) Rare earth elements and yttrium geochemistry of dolomite from post-Variscan veintype mineralization of the Nizky Jesenik and Upper Silesian Basins, Czech Republic. Journal of Geochemical Exploration, v.103, p.69-79.   DOI
47 Yoo, C.M., Lee, Y.I. and Paik, I.S. (1994) Evidence for hypersaline conditions in the Middle Ordovician Yeongheung Formation, Korea. Journal of Geological Society of Korea, v.30, p.335-368.
48 Young, H.R. and Greggs, R.G. (1975) Diagenesis in Lodgepole Limestones, Southwestern Manitoba. Bulletin of Canadian Petroleum Geology, v.23(2), p.201-223.
49 Ziya, M.K. (2013) Origin of dolomite in the late Jurassic platform carbonates, Bolkar Mountains, Central Taurides, Turkey: petrographic and geochemical evidence. Chemie der Erde, v.73, 383-398.   DOI
50 Zhang, X., Hu, W., Jin, Z., Zhang, J., Quian, Y., Zhu, J., Zhu, D., Wang, W. and Xie, X. (2008) REE compositions of Lower Ordovician dolomites in Central and North Tarim Basin, NW China: A potential REE proxy for ancient seawater. Acta Geologica Sinica, v.82(3), p.610-621.
51 Morford, J.L. and Emerson, S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, v.63(11-12), p.1735-1750.   DOI
52 Luders, V., Moller, P. and Dulski, P. (1993), REE fractionation in carbonates and fluorites. Monogr. Ser. Mineral Deposits, v.30(9), p.133-150.
53 Machel, H.G. (2004) Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite, C.J.R., Rizzi, G., Darke, G. (Eds.) The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society Special Publication, v.35, p.7-63.
54 McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of the provenance and sedimentary process. Geochemistry and Mineralogy of Rare Earth Elements, v.21, p.169-200.
55 Morgan, J.W. and Wandless, G.A. (1980) Rare earth elements in some hydrothermal minerals: Evidence of crystallographic control. Geochimica et Cosmochimica Acta, v.44(7), p.973-980.   DOI
56 Morrow, D.W. (1982) Diagenesis 2. Dolomite-Part 2 Dolomitization Models and Ancient Dolostones. Geological Association of Canada, v.9, p.96-107.
57 Mozley, P.S. (1989) Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, v.17(8), p.704-706.   DOI
58 Brand, U. and Veizer, J. (1980) Chemical diagenesis of a multicomponent carbonate system: 1, Trace elements. Journal of Sedimentary Petrology, v.50, p.1219-1236.
59 Anderson, E.J. and Goodwin, R.W. (1990) The significance of metre-scale allocycles in the quest for a fundamental stratigraphic unit. Journal of Geological Society of London, v.147, p.507-518.   DOI
60 Bau, M. and Moller, P. (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology, v.45(3-4), p.231-246.   DOI