• Title/Summary/Keyword: 독성 발현 기작

Search Result 46, Processing Time 0.024 seconds

Study on phytosphingosine and Phytosphingosine-1-phosphate as a cosmetic ingredient (Phytosphingosine과 Phytosphingosine-1-phosphate의 화장품 소재 특성 연구)

  • Moon, Ji-sun;Kim, Young-eun;Pyo, Young-hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.382-393
    • /
    • 2017
  • In this study, it studies about Phytosphingosine (PhS) and Phytosphingosine-1-phosphate(PhS1P), and it tries to confirm the effect through anti-inflammatory, anti-melanin, MMP-1 revelation inhibition, and Western blot analysis experiment after grasping toxicity about 3 cells by using B16F10 melanin cell, RAW264.7 macrophage, and HDF fibroblast in order to find out whether it is possible to use as cosmetic material or not by studying biological activity in terns of skin care. As a result of this experiment, it confirmed that toxicity about B16F10, RAW264.7, HDF cell is low, and PhS1P appeared stronger inhibition activity than PhS in anti-inflammatory NO inhibitory activity experiment. MMP-1 revelation was greater in PhS1P, and it confirmed that the mechanism is due to reduction in ERK activity. On the other hands, melanin generation inhibitory activity is better than arbutin, and it confirmed that the mechanism is due to inhibition of revelation of MTF and Tyrosinase. In a nutshell, PhS and PhS1P that are bioactive substance may confirm the possibility to be used as functional cosmetic for wrinkle and skin improvement of whitening cosmetic.

Anti-diabetic mechanism of melania snail (Semisulcospira libertina) protamex hydrolysates (다슬기 protamex 가수분해물(MPH)의 항당뇨 기작 연구)

  • Pyo, Sang-Eun;Choi, Jae-Suk;Kim, Mi-Ryung
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.1007-1016
    • /
    • 2017
  • Melania snail (Semisulcospira libertina) was traditionally used as the healthy food in Korea. It was generally known to improve liver function and heal a diabetes. The aim of this study was to elucidate the anti-diabetic mechanism of melanian snail hydrolysates treated with protamex (MPH) by investigating the inhibitory action on protein tyrosine phosphatase 1B (PTP1B), the improving effect on the insulin resistance in C2C12 myoblast and the protective effect for pancreatic beta-cell (INS-1) under the glucose toxicity. The melania snail hydrolysates treated with protamex (MPH), which showed the highest degree of hydrolysis (43%), and inhibited effectively PTP1B activity ($IC_{50}=15.42{\pm}1.1{\mu}g/mL$), of which inhibitory effect was higher than usolic acid, positive control ($IC_{50}=16.65{\mu}g/mL$). MPH increased the glucose uptake in C2C12 myoblast treated with palmitic acid. In addition, MPH increased insulin mRNA expression level by over 160% with enhanced cell viability in INS-1 cell under the high glucose concentration (30 mM). These results suggest that MHP may improve the diabetic symptom by the inhibiting the PTP1B activity, increasing the glucose uptake in muscle cell and protecting the pancreatic beta-cell from glucose toxicity.

Characterization of cadC and cadR Mutants in Mediating the Expression of the Salmonella typhimurium cadBA Operon (Salmonella typhimurium cadBA 오페론의 발현에 관여하는 돌연변이체의 선별 및 그 특성)

  • 방성호;박용근
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.259-264
    • /
    • 2001
  • It has been well known that the expression of S. typhimurium cadBA operon requires at least two extracellular signals: low pH and high concentration of lysine. To better understand the nature of pH-dependent and lysine dependent signal transduction, mutants were isolated in JF2238(cadA-lacZ) by Tn10 insertion, spontaneous mutagenesis, and EMS treatment. Two mutants were isolated from JF2238, expressed as a cadA-lacZ operon fusion in various growth conditions, and analyzed to have mutations in cadC, a gene encoding a function necessary for transcriptional activation of cadBA. One isolate (cadC6) conferred pH-independent and lysine-independent cadBA expression and the other(cadC4) showed pH-independent and lysine-dependent cadBA expression. cadR::Tn10 and cadR4 mutants were expressed in the absence of exogenously added lysine. They were also resistant to thiosine and complemented by lysP clone from E. coli. Thus, in the absence of exogenous lysine, cadR is a negative regulator of cadBA expression. Cadaverine, the product of lysine decarboxylation, was shown to inhibit expression of cadA-lacZ fusion in cad $C^+$ cell.

  • PDF

Study of the possible mode of action of O-ethyl S-methyl ethylphosphonothioate via the formation of S-oxide in chemical and metabolic oxidation systems (화학적, 대사적 산화반응 중 생성되는 S-oxide를 이용한 O-ethyl S-methyl ethylphosphonothioate (1) 의 독성 기작에 관한 연구)

  • Hur, J.H.;Fukuto, T.R.;Han, D.S.
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.2
    • /
    • pp.167-177
    • /
    • 1991
  • O-ethyl S-methyl ethylphosphonothioate [$LD_{50}$ (rat, oral) 4.6mg/kg ; $K_i$(bovine erythrocyte acetylcholinesterase) 303 $M^{-1\;min-1}$] was selected as a model compound to study the mode of action of O, S-dialkyl alkylphosphonothioates which have been hypothesized to be toxic via a bioactivation process. Two chemical oxidants, meta-chloroperoxybenzoic acid and monoperoxyphthalic acid, and rat liver microsomal oxidases were used to mimic the action of mixed function oxidases on the model compound. The formation of S-oxide, a very unstable active intermediate, was proposed based on the identification of metabolic products.Furthermore, a trapping experiment with ethanol showed that the unstable intermediate S-oxide had the ability to phosphorylate acetylcholinesterase which is an important enzyme in nerve systems. The S-oxide intermediates are presumed to be responsible for the toxicity of O,S-dialkyl alkylphosphonothioates.

  • PDF

Molecular cloning and characterization of metallothionein cDNA gene in channel catfish (챠넬메기의 metallothionein cDNA 유전자의 cloning 및 그 특성에 관한 연구)

  • Lee, In-Jung;Song, Young-Hwan
    • Journal of fish pathology
    • /
    • v.5 no.2
    • /
    • pp.143-152
    • /
    • 1992
  • Metallothionein is an essential and common protein to regulate the intracellular concentration of heavy metals, which exist in most organisms from bacteria to vertebrates. Although the detailed function of metallothianein has not been fully identified until yet, it may be involoved in the cellular protection against the heavy metal toxicity and in the global regulation of several other genes and the expression of metalloproteins. We have cloned the full cDNA clone of metallothionein gene in Channel Catfish by Reverse Transcriptase-Polymerase Chain Reaction(RT-PCR) starting from poly(A)-containing mRNAs. All PCR fragments have been subcloned into EcoRV site of pBluescript SK+ and dT-tailed at Smal site of pUC19, then PCR products are recovered by the double digestion of recombinant plasmids wiht EcoRI and HindIII, which are adjacent to EcoRV site in multicloning sites or by rapid PCR screening. The nucleotide sequence analysis of pMT150(one of the PCR clones) showed high homology with several other piscine metallothionein cDNA genes.

  • PDF

Effects of Lignan Compound of Sesame on LPS-induced Nitric Oxide Generation in Murine Macrophage RAW 264.7 Cells (참깨의 리그난 화합물의 항염증 효과)

  • Lee, Hwa-Jeong;Son, Dong-Ju;Kang, Myung-Hwa;Lee, Bum-Chun;Hong, Jin-Tae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.3 s.58
    • /
    • pp.173-180
    • /
    • 2006
  • Sesame (Sesamum indicum L.), one of the oldest oilseed crops, has been known to posses antioxidative and inflammatory effects. This seed contains lignan compounds such as sesamin, sesamol, sesaminol, sesaminol diglucosides (SDG), and sesaminol triglucosides (STG). Sesamin, a major lignan in sesame, displayed several biological activities including a protective effects against oxidative damage in the skin. In the present study, we investigated the effect of sesamin, sesamol, sesaminol, SDG, and STG, on nitric oxide (NO) induction and inducible nitric oxide synthane (iNOS) and cyclooxygenases-2 (COX-2) expression in lipopolysaccharides (LPS)-treated RAW 264.7 cells. The results showed that sesamol and sesaminol significantly inhibited NO generation but they were also cytotoxicity however, sesamin effectively inhibited NO production ($IC_{50}: 64{\mu}M$) without my cytotoxic effect in LPS-stimulated macrophage RAW 264.7 cells. In further study, it was founded that sesamin inhibited the expression of inducible nitric oxide synthase but not COX-2 expression. These results suggest that sesamin may be useful for improvements of the inflammatory diseases.

Effect of Acacia catechu Extract on 3T3-L1 Preadipocyte Differentiation (지방세포의 분화에 미치는 Acacia catechu 추출물의 항비만 효과)

  • Kim, Dong-Gyu;Kang, Min Jung;Suh, Hwa Jin;Kwon, Oh Oun;Shin, Jung Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1107-1113
    • /
    • 2016
  • The purpose of this study was to investigate the effects of catechu water extract on adipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated with adipogenic regents by incubation for 9 days in the absence or presence of catechu extract ranging from $1{\sim}200{\mu}g/mL$. The effect of catechu extracts on cell proliferation of 3T3-L1 preadipocytes was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of catechu extracts on 3T3-L1 differentiation was examined by measuring intracellular lipid droplet and triglyceride contents. These results were obtained from preadipocyte proliferation and adipocyte differentiation of 3T3-L1. Catechu extracts inhibited lipid accumulation and remarkably decreased triglyceride contents in 3T3-L1 preadipocytes at a concentration showing no cytotoxicity. The anti-adipogenic effects of catechu appeared to be mediated by significant down-regulation of expression of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element-binding protein 1c proteins apart from expression of hormone-sensitive lipase. We suggest that catechu extracts significantly inhibit adipogenesis and can be used for regulation of obesity.

The Inhibitory Effect of Zinc on the Cadmium- induced Apoptosis in Human Breast Cancer Cells (유방암세포에서 카드뮴에 의해 유도된 아폼토시스에 대한 아연의 저해 효과)

  • Oh Ji Young;Lee Su Jung;Shin Jae Ho;Kim Tae Sung;Moon Hyun Ju;Kang Il Hyun;Kang Tae Seok;Kim An Keun;Han Soon Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.287-296
    • /
    • 2005
  • 아연은 다양한 독성 물질로부터 유도된 아폼토시스를 저해하는 것으로 알려져 있으나 이 기전에 대해서는 명확히 밝혀지지 않았다. 본 연구에서는 인간 유방암 세포 MCF-7에 카드뮴을 처리하였을 때 유도되는 아폼토시스에 대한 아연의 저해효과를 살펴보았다. 아연의 아폼토시스 저해 효과는 DNA분절현상, 핵의 쪼개짐 그리고 caspase-9의 발현을 통하여 확인하였다. 또한 아연의 아폼토시스 저해효과가 카드뮴에 의한 산화적 스트레스와 관련이 있는지 확인하기 위하여 활성산소인 peroxide의 농도를 세포내에서 측정하였다. 나아가 superoxide dismutase (SOD), catalase (CAT) 그리고 glutahion redurtase (CR)같은 활성산소에 대한 인체내 방어기작으로 작용하는 항산화 효소의 활성을 측정하였다. 본 연구를 통해 아연이 카드뮴에 의해 생성된 세포내의 활성산소의 양을 감소시키고 항산화 효소를 회복시키는 기전이 카드뮴에 의한 아폼토시스를 저해하는 한 요인으로 사료되어진다.

Effects of Esthetic Essential Oils on LPS-Induced Nitric Oxide Generation in Murine Marcrophage RAW 264,7 Cells (Medical Skin Care에서 사용빈도가 높은 Esthetic Essential Oils에 의한 Nitric Oxide 생성억제 효과)

  • Hong, Jin-Tae;Lee, Hwa-Jeong;Lee, Chung-Woo;Choi, Myoung-Suk;Son, Dong-Ju
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.2 s.57
    • /
    • pp.111-116
    • /
    • 2006
  • Essential oils have been used extensively in pharmacy, medicine, food, beverages, cosmetics, perfumery and aromatherapy. Although anti-bacteria, anti-virus, alleviation of fever operations and an anti-inflammatory properties have been reported, action mechanisms have not been fully discovered. In the present study, anti-inflammatory activities of thirty three essential oils have been evaluated in lipopolysaccharide (LPS)-treated macrophage RAW 264.7 cells by the evaluation of nitric oxide (NO) generation since NO generation is implicated in causal factor of inflammation. Among the tested 33 essential oil, Lemongrass oil showed the most inhibitory effect on LPS-induced NO generation in a dose dependent manner ($IC_{50}$ : $22 {\mu}g/mL$). In further study, it was found that Lemongrass oil inhibited the expression of inducible nitric oxide synthase. These results suggest that Lemongrass oil may be useful for improvements of the inflammatory disease such as pimple acne skin.

Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications (박테리아의 toxin-antitoxin system과 생명공학기술 응용)

  • Kim, Yoonji;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.265-274
    • /
    • 2016
  • Toxin-antitoxin (TA) systems are ubiquitous genetic modules that are evolutionally conserved in bacteria and archaea. TA systems composed of an intracellular toxin and its antidote (antitoxin) are currently classified into five types. Commonly, activation of toxins under stress conditions inhibits diverse cellular processes and consequently induces cell death or reversible growth inhibition. These effects of toxins play various physiological roles in such as regulation of gene expression, growth control (stress response), programmed cell arrest, persister cells, programmed cell death, phage protection, stabilization of mobile genetic elements or postsegregational killing of plasmid-free cells. Accordingly, bacterial TA systems are commonly considered as stress-responsive genetic modules. However, molecule screening for activation of toxin in TA system is available as development of antimicrobial agents. In addition, cytotoxic effect induced by toxin is used as effective cloning method with antitoxic effect of antitoxin; consequently cells containing cloning vector inserted a target gene can survive and false-positive transformants are removed. Also, TA system is applicable to efficient single protein production in biotechnology industry because toxins that are site-specific ribonuclease inhibit protein synthesis except for target protein. Furthermore, some TA systems that induce apoptosis in eukaryotic cells such as cancer cells or virus-infected cells would have a wide range of applications in eukaryotes, and it will lead to new ways of treating human disease. In this review, we summarize the current knowledge on bacterial TA systems and their applications.