Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.2.265

Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications  

Kim, Yoonji (Department of Integrated Biology, Pusan National University)
Hwang, Jihwan (Department of Integrated Biology, Pusan National University)
Publication Information
Journal of Life Science / v.26, no.2, 2016 , pp. 265-274 More about this Journal
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic modules that are evolutionally conserved in bacteria and archaea. TA systems composed of an intracellular toxin and its antidote (antitoxin) are currently classified into five types. Commonly, activation of toxins under stress conditions inhibits diverse cellular processes and consequently induces cell death or reversible growth inhibition. These effects of toxins play various physiological roles in such as regulation of gene expression, growth control (stress response), programmed cell arrest, persister cells, programmed cell death, phage protection, stabilization of mobile genetic elements or postsegregational killing of plasmid-free cells. Accordingly, bacterial TA systems are commonly considered as stress-responsive genetic modules. However, molecule screening for activation of toxin in TA system is available as development of antimicrobial agents. In addition, cytotoxic effect induced by toxin is used as effective cloning method with antitoxic effect of antitoxin; consequently cells containing cloning vector inserted a target gene can survive and false-positive transformants are removed. Also, TA system is applicable to efficient single protein production in biotechnology industry because toxins that are site-specific ribonuclease inhibit protein synthesis except for target protein. Furthermore, some TA systems that induce apoptosis in eukaryotic cells such as cancer cells or virus-infected cells would have a wide range of applications in eukaryotes, and it will lead to new ways of treating human disease. In this review, we summarize the current knowledge on bacterial TA systems and their applications.
Keywords
Antitoxin; antimicrobial; anticancer; antiviral; toxin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Germain, E., Castro-Roa, D., Zenkin, N. and Gerdes, K. 2013. Molecular mechanism of bacterial persistence by HipA. Mol. Cell 52, 248-254.   DOI
2 Goeders, N. and Van Melderen, L. 2014. Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 6, 304-324.   DOI
3 Hallez, R., Geeraerts, D., Sterckx, Y., Mine, N., Loris, R. and Van Melderen, L. 2010. New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol. Microbiol. 76, 719-732.   DOI
4 Miki, T., Park, J. A., Nagao, K., Murayama, N. and Horiuchi, T. 1992. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J. Mol. Biol. 225, 39-52.   DOI
5 Munoz-Gomez, A. J., Lemonnier, M., Santos-Sierra, S., Berzal-Herranz, A. and Diaz-Orejas, R. 2005. RNase/anti-RNase activities of the bacterial parD toxin-antitoxin system. J. Bacteriol. 187, 3151-3157.   DOI
6 Jaffe, A., Ogura, T. and Hiraga, S. 1985. Effects of the ccd function of the F plasmid on bacterial growth. J. Bacteriol. 163, 841-849.
7 Jiang, Y., Pogliano, J., Helinski, D. R. and Konieczny, I. 2002. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol. 44, 971-979.   DOI
8 Jones, L. J., Carballido-Lopez, R. and Errington, J. 2001. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913-922.   DOI
9 Jorgensen, M. G., Pandey, D. P., Jaskolska, M. and Gerdes, K. 2009. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J. Bacteriol. 191, 1191-1199.   DOI
10 Kawano, M., Aravind, L. and Storz, G. 2007. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol. Microbiol. 64, 738-754.   DOI
11 Lee, M. W., Rogers, E. E. and Stenger, D. C. 2012. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease. Phytopathology 102, 32-40.   DOI
12 Leplae, R., Geeraerts, D., Hallez, R., Guglielmini, J., Dreze, P. and Van Melderen, L. 2011. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 39, 5513-5525.   DOI
13 Park, J. H., Yamaguchi, Y. and Inouye, M. 2012. Intramolecular regulation of the sequence-specific mRNA interferase activity of MazF fused to a MazE fragment with a linker cleavable by specific proteases. Appl. Environ. Microbiol. 78, 3794-3799.   DOI
14 Park, S. J., Son, W. S. and Lee, B. J. 2013. Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents. Biochim. Biophys. Acta 1834, 1155-1167.   DOI
15 Mutschler, H. and Meinhart, A. 2011. Epsilon/zeta systems: their role in resistance, virulence, and their potential for antibiotic development. J. Mol. Med. (Berl) 89, 1183-1194.   DOI
16 Lopes, A. P., Lopes, L. M., Fraga, T. R., Chura-Chambi, R. M., Sanson, A. L., Cheng, E., Nakajima, E., Morganti, L. and Martins, E. A. 2014. VapC from the leptospiral VapBC toxin-antitoxin module displays ribonuclease activity on the initiator tRNA. PLoS One 9, e101678.   DOI
17 Maezato, Y., Daugherty, A., Dana, K., Soo, E., Cooper, C., Tachdjian, S., Kelly, R. M. and Blum, P. 2011. VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. RNA 17, 1381-1392.   DOI
18 Miallau, L., Faller, M., Chiang, J., Arbing, M., Guo, F., Cascio, D. and Eisenberg, D. 2009. Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. VapBC-5 from Mycobacterium tuberculosis. J. Biol. Chem. 284, 276-283.   DOI
19 Masuda, H., Tan, Q., Awano, N., Yamaguchi, Y. and Inouye, M. 2012. A novel membrane-bound toxin for cell division, CptA (YgfX), inhibits polymerization of cytoskeleton proteins, FtsZ and MreB, in Escherichia coli. FEMS Microbiol. Lett. 328, 174-181.   DOI
20 McKenzie, J. L., Duyvestyn, J. M., Smith, T., Bendak, K., Mackay, J., Cursons, R., Cook, G. M. and Arcus, V. L. 2012. Determination of ribonuclease sequence-specificity using Pentaprobes and mass spectrometry. RNA 18, 1267-1278.   DOI
21 Sharp, J. D., Cruz, J. W., Raman, S., Inouye, M., Husson, R. N. and Woychik, N. A. 2012. Growth and translation inhibition through sequence-specific RNA binding by Mycobacterium tuberculosis VapC toxin. J. Biol. Chem. 287, 12835-12847.   DOI
22 Siboo, I. R., Chambers, H. F. and Sullam, P. M. 2005. Role of SraP, a Serine-rich surface protein of staphylococcus aureus, in binding to human platelets. Infect. Immun. 73, 2273-2280.   DOI
23 Stieber, D., Gabant, P. and Szpirer, C. 2008. The art of selective killing: plasmid toxin/antitoxin systems and their technological applications. BioTechniques 45, 344-346.   DOI
24 Suzuki, M., Zhang, J., Liu, M., Woychik, N. A. and Inouye, M. 2005. Single protein production in living cells facilitated by an mRNA interferase. Mol. Cell 18, 253-261.   DOI
25 Nariya, H. and Inouye, M. 2008. MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55-66.   DOI
26 Park, J. H., Yamaguchi, Y. and Inouye, M. 2011. Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase. FEBS Lett. 585, 2526-2532.   DOI
27 Okamoto, M., Chono, H., Kawano, Y., Saito, N., Tsuda, H., Inoue, K., Kato, I., Mineno, J. and Baba, M. 2013. Sustained inhibition of HIV-1 replication by conditional expression of the E. coli-derived endoribonuclease MazF in CD4+ T cells. Hum. Gene Ther. Methods 24, 94-103.   DOI
28 Overgaard, M., Borch, J., Jorgensen, M. G. and Gerdes, K. 2008. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol. Microbiol. 69, 841-857.   DOI
29 Pandey, D. P. and Gerdes, K. 2005. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33, 966-976.   DOI
30 Wang, X., Lord, D. M., Cheng, H. Y., Osbourne, D. O., Hong, S. H., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W., Benedik, M. J., Page, R. and Wood, T. K. 2012. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8, 855-861.   DOI
31 Wang, X., Lord, D. M., Hong, S. H., Peti, W., Benedik, M. J., Page, R. and Wood, T. K. 2013. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ. Microbiol. 15, 1734-1744.   DOI
32 Weaver, K. E., Ehli, E. A., Nelson, J. S. and Patel, S. 2004. Antisense RNA regulation by stable complex formation in the Enterococcus faecalis plasmid pAD1 par addiction system. J. Bacteriol. 186, 6400-6408.   DOI
33 Weaver, K. E., Weaver, D. M., Wells, C. L., Waters, C. M., Gardner, M. E. and Ehli, E. A. 2003. Enterococcus faecalis plasmid pAD1-encoded Fst toxin affects membrane permeability and alters cellular responses to lantibiotics. J. Bacteriol. 185, 2169-2177.   DOI
34 Schifano, J. M., Vvedenskaya, I. O., Knoblauch, J. G., Ouyang, M., Nickels, B. E. and Woychik, N. A. 2014. An RNA-seq method for defining endoribonuclease cleavage specificity identifies dual rRNA substrates for toxin MazF-mt3. Nat. Commun. 5, 3538.
35 Ramage, H. R., Connolly, L. E. and Cox, J. S. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5, e1000767.   DOI
36 Sala, A., Bordes, P. and Genevaux, P. 2014. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 6, 1002-1020.   DOI
37 Schifano, J. M., Edifor, R., Sharp, J. D., Ouyang, M., Konkimalla, A., Husson, R. N. and Woychik, N. A. 2013. Mycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site. Proc. Natl. Acad. Sci. USA 110, 8501-8506.   DOI
38 Yamaguchi, Y., Park, J. H. and Inouye, M. 2011. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61-79.   DOI
39 Zhang, J., Zhang, Y., Zhu, L., Suzuki, M. and Inouye, M. 2004. Interference of mRNA function by sequence-specific endoribonuclease PemK. J. Biol. Chem. 279, 20678-20684.   DOI
40 Zhang, Y. and Inouye, M. 2011. RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Mol. Microbiol. 79, 1418-1429.   DOI
41 Zhang, Y., Zhang, J., Hoeflich, K. P., Ikura, M., Qing, G. and Inouye, M. 2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12, 913-923.   DOI
42 Zhang, Y., Zhu, L., Zhang, J. and Inouye, M. 2005. Characterization of ChpBK, an mRNA interferase from Escherichia coli. J. Biol. Chem. 280, 26080-26088.   DOI
43 Vogel, J., Argaman, L., Wagner, E. G. and Altuvia, S. 2004. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr. Biol. 14, 2271-2276.   DOI
44 Unterholzner, S. J., Poppenberger, B. and Rozhon, W. 2013. Toxin-antitoxin systems: Biology, identification, and application. Mob. Genet. Elements 3, e26219.   DOI
45 Van Melderen, L., Bernard, P. and Couturier, M. 1994. Londependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol. Microbiol. 11, 1151-1157.   DOI
46 Vesper, O., Amitai, S., Belitsky, M., Byrgazov, K., Kaberdina, A. C., Engelberg-Kulka, H. and Moll, I. 2011. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147, 147-157.   DOI
47 Williams, J. J. and Hergenrother, P. J. 2012. Artificial activation of toxin-antitoxin systems as an antibacterial strategy. Trends Microbiol. 20, 291-298.   DOI
48 Winther, K. S., Brodersen, D. E., Brown, A. K. and Gerdes, K. 2013. VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nat. Commun. 4, 2796.
49 Winther, K. S. and Gerdes, K. 2011. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc. Natl. Acad. Sci. USA 108, 7403-7407.   DOI
50 Yamaguchi, Y. and Inouye, M. 2009. mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. Prog. Mol. Biol. Transl. Sci. 85, 467-500.   DOI
51 Yamaguchi, Y., Park, J. H. and Inouye, M. 2009. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284, 28746-28753.   DOI
52 Hurley, J. M. and Woychik, N. A. 2009. Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J. Biol. Chem. 284, 18605-18613.   DOI
53 Zhu, L., Inoue, K., Yoshizumi, S., Kobayashi, H., Zhang, Y., Ouyang, M., Kato, F., Sugai, M. and Inouye, M. 2009. Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. J. Bacteriol. 191, 3248-3255.   DOI
54 Zhu, L., Zhang, Y., Teh, J. S., Zhang, J., Connell, N., Rubin, H. and Inouye, M. 2006. Characterization of mRNA interferases from Mycobacterium tuberculosis. J. Biol. Chem. 281, 18638-18643.   DOI
55 de la Cueva-Mendez, G., Mills, A. D., Clay-Farrace, L., Diaz-Orejas, R. and Laskey, R. A. 2003. Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis. EMBO J. 22, 246-251.   DOI
56 Dy, R. L., Richter, C., Salmond, G. P. C. and Fineran, P. C. 2014. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu. Rev. Virol. 1, 307-331.   DOI
57 Hayes, F. 2003. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496-1499.   DOI
58 Bertram, R. and Schuster, C. F. 2014. Post-transcriptional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems. Front. Cell. Infect. Microbiol. 4, 6.
59 Bi, E., Dai, K., Subbarao, S., Beall, B. and Lutkenhaus, J. 1991. FtsZ and cell division. Res. Microbiol. 142, 249-252.   DOI
60 Brown, J. M. and Shaw, K. J. 2003. A novel family of Escherichia coli toxin-antitoxin gene pairs. J. Bacteriol. 185, 6600-6608.   DOI
61 Brzozowska, I. and Zielenkiewicz, U. 2013. Regulation of toxin-antitoxin systems by proteolysis. Plasmid 70, 33-41.   DOI
62 Liu, M., Zhang, Y., Inouye, M. and Woychik, N. A. 2008. Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. Proc. Natl. Acad. Sci. USA 105, 5885-5890.   DOI
63 Bukowski, M., Lyzen, R., Helbin, W. M., Bonar, E., Szalewska-Palasz, A., Wegrzyn, G., Dubin, G., Dubin, A. and Wladyka, B. 2013. A regulatory role for Staphylococcus aureus toxin-antitoxin system PemIKSa. Nat. Commun. 4, 2012.
64 Cook, G. M., Robson, J. R., Frampton, R. A., McKenzie, J., Przybilski, R., Fineran, P. C. and Arcus, V. L. 2013. Ribonucleases in bacterial toxin-antitoxin systems. Biochim. Biophys. Acta 1829, 523-531.   DOI
65 Lioy, V. S., Rey, O., Balsa, D., Pellicer, T. and Alonso, J. C. 2010. A toxin-antitoxin module as a target for antimicrobial development. Plasmid 63, 31-39.   DOI
66 Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley, K. S. and Salmond, G. P. 2009. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc. Natl. Acad. Sci. USA 106, 894-899.   DOI
67 Fozo, E. M., Hemm, M. R. and Storz, G. 2008. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev. 72, 579-589.   DOI
68 Gerdes, K., Christensen, S. K. and Lobner-Olesen, A. 2005. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371-382.   DOI
69 Gerdes, K., Thisted, T. and Martinussen, J. 1990. Mechanism of post-segregational killing by the hok/sok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid-free cells. Mol. Microbiol. 4, 1807-1818.   DOI