• Title/Summary/Keyword: 독립 벡터 분석

Search Result 60, Processing Time 0.031 seconds

Robust Speaker Identification using Independent Component Analysis (독립성분 분석을 이용한 강인한 화자식별)

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.583-592
    • /
    • 2000
  • This paper proposes feature parameter transformation method using independent component analysis (ICA) for speaker identification. The proposed method assumes that the cepstral vectors from various channel-conditioned speech are constructed by a linear combination of some characteristic functions with random channel noise added, and transforms them into new vectors using ICA. The resultant vector space can give emphasis to the repetitive speaker information and suppress the random channel distortions. Experimental results show that the transformation method is effective for the improvement of speaker identification system.

  • PDF

Verb concept clustering using Independent Component Analysis and Box-Cox transformation (독립성분분석과 Box-Cox 변환을 이용한 동사 개념 클러스터링)

  • Chagnaa, Altangerel;Lee, Chang-Beom;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.164-170
    • /
    • 2006
  • 본 논문에서는 한국어 동사의 개념적 클러스터링 방법을 제안하다. 사용되는 기법은 독립성분분석, Box-Cox 변환, 상관분석 등이다. 독립성분분석은 잠재적인 성분을 통계적 독립(statistical independence)에 기반하여 추출하는 분석 방법이다. 그런데, 독립성분분석에서는 mixture(동사)의 분포는 정규 분포(가우시안 분포)에 따른다고 가정한다. 따라서 동사의 분포를 보다 정규 분포화 할 필요가 있다. 이에 본 논문에서는 Box-Cox 변환을 이용하여 동사의 분포를 정규 분포에 근사한다. 또한, 독립성분분석에서는 추출할 적당한 성분의 개수를 결정할 수가 없다. 이에 본 논문에서는 주성분분석의 결과로 획득되는 고유치의 누적 기여율을 이용하여 독립성분의 수를 결정한다. 그리고, 추출된 독립성분 벡터와 동사 벡터간의 상관계수에 이용하여 독립성분(개념)에 밀접하게 관련 있는 동사들을 하나의 클러스터로 구성한다. 한국어 동사를 대상으로 클러스터링한 결과, Box-Cox 변환을 적용한 경우가 더 좋은 성능을 보였다.

  • PDF

Mixed Noise Cancellation by Independent Vector Analysis and Frequency Band Beamforming Algorithm in 4-channel Environments (4채널 환경에서 독립벡터분석 및 주파수대역 빔형성 알고리즘에 의한 혼합잡음제거)

  • Choi, Jae-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.811-816
    • /
    • 2019
  • This paper first proposes a technique to separate clean speech signals and mixed noise signals by using an independent vector analysis algorithm of frequency band for 4 channel speech source signals with a noise. An improved output speech signal from the proposed independent vector analysis algorithm is obtained by using the cross-correlation between the signal outputs from the frequency domain delay-sum beamforming and the output signals separated from the proposed independent vector analysis algorithm. In the experiments, the proposed algorithm improves the maximum SNRs of 10.90dB and the segmental SNRs of 10.02dB compared with the frequency domain delay-sum beamforming algorithm for the input mixed noise speeches with 0dB and -5dB SNRs including white noise, respectively. Therefore, it can be seen from this experiment and consideration that the speech quality of this proposed algorithm is improved compared to the frequency domain delay-sum beamforming algorithm.

Performance Improvement of Speech Recognition Based on Independent Component Analysis (독립성분분석법을 이용한 음성인식기의 성능향상)

  • 김창근;한학용;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper, we proposed new method of speech feature extraction using ICA(Independent Component Analysis) which minimized the dependency and correlation among speech signals on purpose to separate each component in the speech signal. ICA removes the repeating of data after finding the axis direction which has the greatest variance in input dimension. We verified improvement of speech recognition ability with training and recognition experiments when ICA compared with conventional mel-cepstrum features using HMM. Also, we can see that ICA dealt with the situation of recognition ability decline that is caused by environmental noise.

  • PDF

Comparison of Feature Extraction Methods for the Telephone Speech Recognition (전화 음성 인식을 위한 특징 추출 방법 비교)

  • 전원석;신원호;김원구;이충용;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.7
    • /
    • pp.42-49
    • /
    • 1998
  • 본 논문에서는 전화망 환경에서 음성 인식 성능을 개선하기 위한 특징 벡터 추출 단계에서의 처리 방법들을 연구하였다. 먼저, 고립 단어 인식 시스템에서 채널 왜곡 보상 방 법들을 단어 모델과 문맥 독립 음소 모델에 대하여 인식 실험을 하였다. 켑스트럼 평균 차 감법, RASTA 처리, 켑스트럼-시간 행렬을 실험하였으며, 인식 모델에 따른 각 알고리즘의 성능을 비교하였다. 둘째로, 문맥 독립 음소 모델을 이용한 인식 시스템의 성능 향상을 위하 여 정적 특징 벡터에 대하여 주성분 분석 방법(principal component analysis)과 선형 판별 분석(linear discriminant analysis)과 같은 선형 변환 방법을 적용하여 분별력이 높은 벡터 공간으로 변환함으로써 인식 성능을 향상시켰다. 또한 선형 변환 방법을 켑스트럼 평균 차 감법과 결합하여 더욱 뛰어난 성능을 보여주었다.

  • PDF

Robust Speaker Recognition using Independent Component Analysis (독립성분분석을 이용한 강인한 화자인식)

  • 장길진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.327-330
    • /
    • 1998
  • 독립성분분석(ICA: Independent Component Analysis)이란 특징이 상이한 둘 이상의 신호들이 선형적으로 결합되어 있을 때 이를 효과적으로 분리하는 방법들을 통칭하며 잡음제거, 음질개선 및 신호처리 분야에서 많이 활용되고 있다. 본 논문에서는 전화음성 화자인식 시스템의 성능향상을 위해 독립성분분석을 이용하는 방법을 제안한다. 먼저 화자가 발성한 음성신호의 켑스트럼 계수를 여러 채널 함수들의 선형적인 합으로 가정하고, 독립성분분석을 이용하여 얻은 새로운 켑스트럼 벡터를 학습과 인식에 사용하였다. 실험자료는 잔화음성 화자식별기의 성능평가에 널리 쓰이고 있는 SPIDRE를 사용하였고 regodic 은닉 마코프 모델을 이용하여 문장 독립 화자식별 시스템을 구성하였다. 학습음성의 특징과 실험음성의 특징이 다른 조건에서 기존의 채널 정규화 방법들에 비해 10~15%이상 인식률이 향상되었다.

  • PDF

Iris Feature Extraction using Independent Component Analysis (독립 성분 분석 방법을 이용한 홍채 특징 추출)

  • 노승인;배광혁;박강령;김재희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.20-30
    • /
    • 2003
  • In a conventional method based on quadrature 2D Gator wavelets to extract iris features, the iris recognition is performed by a 256-byte iris code, which is computed by applying the Gabor wavelets to a given area of the iris. However, there is a code redundancy because the iris code is generated by basis functions without considering the characteristics of the iris texture. Therefore, the size of the iris code is increased unnecessarily. In this paper, we propose a new feature extraction algorithm based on the ICA (Independent Component Analysis) for a compact iris code. We implemented the ICA to generate optimal basis functions which could represent iris signals efficiently. In practice the coefficients of the ICA expansions are used as feature vectors. Then iris feature vectors are encoded into the iris code for storing and comparing an individual's iris patterns. Additionally, we introduce two methods to enhance the recognition performance of the ICA. The first is to reorganize the ICA bases and the second is to use a different ICA bases set. Experimental results show that our proposed method has a similar EER (Equal Error Rate) as a conventional method based on the Gator wavelets, and the iris code size of our proposed methods is four times smaller than that of the Gabor wavelets.

Feature Extraction of Single Images by Using Independent Component Analysis Based on Neuarl Networks (신경망 기반 독립성분분석에 의한 단일영상들의 특징추출)

  • 조용현;민성재;김아람;오정은
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.370-373
    • /
    • 2002
  • 본 논문에서는 단일영상들에 포함된 특징들을 효과적으로 추출하기 위하여 신경망 기반 독립성분분석기법의 이용을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 ?ㄱ습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 512x412 픽셀의 L둠 영상과 480x225 픽셀의 지폐영상 각각에서 선택된 1,000개의 영상패치들을 대상으로 시뮬레이션 한 결과, 추출된 16x16 펙셀의 160개 독립성분 기저벡터는 지문영상과 지폐영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

An Efficient Feature Extraction of Finger Images by Using Independent Component Analysis Based on Neuarl Networks (신경망 기반 독립성분분석을 이용한 지문영상의 효과적인 특징추출)

  • 조용현;민성재
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.291-294
    • /
    • 2002
  • 본 논문에서는 신경망 기반 독립성분분석기법을 이용하여 지문영상에 포함된 특징들을 효과적으로 추출하는 방법을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 학습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 256$\times$256 픽셀의 8개 지문영상에서 선택된 10,000개의 영상패치를 대상으로 시뮬레이션 한 결과, 추출된 16$\times$16 펙셀의 160개 독립성분 기저벡터는 지문영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

Feature Extraction Using Fixed-Point ICA of Secant Method and Moment (할선법과 모멘트의 고정점 알고리즘 독립성분분석에 의한 특징추출)

  • Cho, Yong-Hyun;Kim, A-Ram;Oh, Jeung-Eun;Jeon, Yun-Hee
    • Annual Conference of KIPS
    • /
    • 2003.05b
    • /
    • pp.883-886
    • /
    • 2003
  • 본 연구에서는 할선법과 모멘트의 고정점 알고리즘 독립성분분석을 이용하여 영상의 특징을 추출하는 기법을 제안하였다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위한 목적함수의 최적화 과정에서 요구되는 1차 미분에 따른 계산을 간략화하기 위함이고, 모멘트는 최적화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 $256{\times}256$ 픽셀의 10개 지문영상에서 선택된 각각 10,000개의 3가지 영상패치들을 대상으로 적용한 결과, 제안된 기법은 뉴우턴법이나 할선법의 알고리즘 보다도 빠른 특징추출 속도가 있음을 확인하였다 한편 추출된 $16{\times}16$ 펙셀의 160개 독립성분 기저벡터 각각은 영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인하였다.

  • PDF