• Title/Summary/Keyword: 도로정밀지도

Search Result 82, Processing Time 0.025 seconds

Using Detailed Soil Maps(1:5,000) to Estimate SCS Runoff Curve Number in a Small Watershed (SCS-CN 산정을 위한 수치세부정밀토양도의 활용)

  • Hong, Suk-Young;Jung, Kang-Ho;Choi, Chol-Uong;Jang, Min-Won;Kim, Yi-Hyun;Ha, Sang-Keun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.106-115
    • /
    • 2007
  • 농촌진흥청에서 제공하고 있는 수치토양도는 수문 수자원 분야에서 SCS-CN법을 이용한 유효우량 및 유출곡선 산정에 가장 많이 활용되고 있다. 토양조사 국책사업 결과 전산화된 토양도 및 토양검정 데이터베이스에 기초한 토양정보 웹 시스템은 전국의 토양 전자지도와 토양 통계 자료를 주제별로 검색하거나 필지별 토양분석 성적에 따른 토양관리처방서를 조회하는데 사용되는 농업분야 이외의 사용자 그룹을 위해 필요한 정보를 제공하도록 활용 및 유통 요구도가 높아지고 있다. 수치토양도가 수문학적 토양유형 정보를 포함하도록 제공하는 것이 먼저 필요할 것으로 생각되고 다음으로는 수문 수자원 분야 활용 측면에서 수치토양도가 제공하는 속성, 축척, 제공형태, 좌표체계, 서비스 방식 등에 대하여 활용정책을 마련하여 이에 따라 자료가 유통될 수 있도록 하여야 할 것이다. 앞으로 활용이 가능하게 될 수치세부정밀토양도와 토양유형을 이용하여 충북 괴산군 소수면의 소유역에 대해 SCS 삼각법에 따른 단위도 작성, 유효우량 산출 및 유출곡선을 작성한 결과 농업과학기술원의 정 등(2006)이 분류한 토양유형을 이용한 결과 정 등(1995)에 따른 토양유형을 이용한 결과에 비해 CN값과 유효우량이 더 높게 나타났고 삼각단위도로부터 유도한 정점의 유출량과 시간별 유량 관측값에 더 가까운 것으로 나타났다.

  • PDF

ICT EXPERT INTERVIEW - 자율주행차

  • Choe, Jeong-Dan
    • TTA Journal
    • /
    • s.173
    • /
    • pp.6-11
    • /
    • 2017
  • 자율주행차는 센서와 인공지능으로 차량의 위치와 주변 상황을 인지하고 주행 경로를 계획하여, 자동차 스스로 교통법규에 따라 주행하는 차량이다. 이는 4차 산업혁명의 주역으로 2020년 상용화 될 전망이다. 2020년 자율주행차 세계 시장규모는 189억 달러로 예측되고 이를 위해 각국의 자동차사, ICT 업체들이 시장 선점을 위해 치열하게 경쟁하고 있다. 자율주행 상용화를 위한 기술적 해결 이슈로는 센서, 인공지능, 빅데이터 분석, 기능안전, 정밀지도, 신뢰성 높은 차량통신, 차량 SW 플랫폼, 차량 사이버 보안 등이 있다. 이러한 기술적 이슈가 해결되어야 2020년 자율주행차 시대를 맞이하고 새로운 시장이 열리게 될 것이다. 자율주행차 상용화를 위해서 차량, ICT 기술, 도로 인프라 등 산업 융합 및 기업체 간 협업이 기술개발과 사업화를 성공시키는 중요한 열쇠가 될 수 있다는 것을 강조하며, 이번 특집호를 통해 자율주행 실현을 위한 핵심기술 및 표준화에 대한 전체적인 흐름과 방향을 파악하는데 도움이 될 것으로 기대한다.

  • PDF

Applicability Evaluation of Mobile Mapping System for Road Construction Surveying (도로 시공측량을 위한 모바일맵핑시스템의 적용성 평가)

  • Park, Joon Kyu;Lee, Keun Wang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.169-175
    • /
    • 2022
  • Korea's construction industry has a shortage and aging of construction manpower, low productivity compared to other industries, and a high rate of industrial accidents. The Ministry of Land, Infrastructure and Transport is preparing for the 4th industrial revolution and is expanding investment in construction automation and innovative growth engines to improve productivity in the construction industry. In order for new technologies to be utilized in the road construction field, the accuracy of the technologies and the applicability of each type of work must be evaluated. In this study, the accuracy of the mobile mapping system was tried to verify based on the relevant work regulations, and to suggest the applicability of the mobile mapping system to high-speed driving tracks through data acquisition and analysis on road construction sites. The accuracy of the equipment used in the study was verified in accordance with the relevant work regulations, and the possibility of applying the mobile mapping system used for the study to road construction surveying was presented with a maximum error of less than 10cm in the horizontal and vertical directions. In addition, the possibility of utilizing the road construction survey using the mobile mapping system was presented through comparison with the existing method for data acquisition time for construction surveying, production of construction status survey results, and calculation of heatmap and earthworks. In the future, the use of construction status surveying of the mobile mapping system will greatly improve the efficiency of construction work.

Research on the Production of Risk Maps on Cut Slope Using Weather Information and Adaboost Model (기상정보와 Adaboost 모델을 이용한 깎기비탈면 위험도 지도 개발 연구)

  • Woo, Yonghoon;Kim, Seung-Hyun;Kim, Jin uk;Park, GwangHae
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.663-671
    • /
    • 2020
  • Recently, there have been many natural disasters in Korea, not only in forest areas but also in urban areas, and the national requirements for them are increasing. In particular, there is no pre-disaster information system that can systematically manage the collapse of the slope of the national highway. In this study, big data analysis was conducted on the factors causing slope collapse based on the detailed investigation report on the slope collapse of national roads in Gangwon-do and Gyeongsang-do areas managed by the Cut Slope Management System (CSMS) and the basic survey of slope failures. Based on the analysis results, a slope collapse risk prediction model was established through Adaboost, a classification-based machine learning model, reflecting the collapse slope location and weather information. It also developed a visualization map for the risk of slope collapse, which is a visualization program, to show that it can be used for preemptive disaster prevention measures by identifying the risk of slope due to changes in weather conditions.

Mobile Mapping System Development Based on MEMS-INS for Measurement of Road Facility (도로시설물 계측을 위한 MEMS-INS 기반 모바일매핑시스템(MMS) 개발)

  • Lee, Kye Dong;Jung, Sung Heuk;Lee, Ki Hyung;Choi, Yun Soo;Kim, Man Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • The purpose of this study is that the low-cost mobile mapping system using INS (Inertial Navigation System) based on MEMS (Micro Electro Mechanical System) could decipher the interpretation of road facility with the accuracy of x, y 0.546m plane error. Even though the MMS (Mobile Mapping System) technology as a new measurement technology has been used vividly to set up geographic information by some world leading surveying equipment manufacturers, the domestic technology is still in its beginning stage. Several domestic institutes and companies tried to catch up the leading technology but they just produced prototypes which needs more stabilization. Through this thesis, we developed low-cost mobile mapping system installed with INS based on MEMS after time synchronizing sensors for MMS such as LiDAR (Light Detection And Ranging), CCD (Charge Coupled Device), GPS/INS (Global Positioning System / Inertial Navigation System) and DMI (Distance Measurement Instrument).

Slope Navigation based on the Cut Slope Data Management System (내비게이션 기반 절토사면 데이터 관리시스템)

  • Bae, Sang-Woo;Kim, Seung-Hyun;Lee, Jong-Hyun;Koo, Ho-Bon;Lee, Yun-Rae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 2010
  • Cut Slope Management System(CSMS) is a systematic maintenance and management system designed to prevent the collapse of cut slopes located along national roads. In order to implement safe road operation system, KICT has started the inventory of cut slopes and developed a cut slope database since 2006. Cut slope database management system using GIS technology and navigation system was developed as a Information Technology application. Through the Cut Slope Navigation System(SLOPE-Navi.), the previously developed database was checked and verified. The converted cut slope inventory data and field investigation data of 28,707 cut slopes were loaded on the navigation map. We consider that the Cut Slope Navigation Management System can be useful as in-situ system, which can be systematic and effective DB management and operation to prevent cut slope collapses and establish a remedial countermeasure as mitigation concerning disasters.

THE DESIGN OF DGPS/INS INTEGRATION FOR IMPLEMENTATION OF 4S-Van (4S-Van 구현을 위한 DGPS/INS 통합 알고리즘 설계)

  • 김성백;이승용;김민수;이종훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.351-366
    • /
    • 2002
  • In this study, we developed low cost INS and (D)GPS integration for continuous attitude and position and utilized it for the determination of exterior orientation parameters of image sensors which are equipped in 4S-Van. During initial alignment process, the heading information was extracted from twin GPS and fine alignment with Kalman filter was performed for the determination of roll and pitch. Simulation and van test were performed for the performance analysis. Based on simulation result, roll and pitch error is around 0.01-0.03 degrees and yaw error around 0.1 degrees. Based on van test, position error in linear road is around 10 cm and curve around 1 m. Using direct georeferencing method, the image sensor's orientation and position information can be acquired directly from (D)GPS/INS integration. 4S-Van achieved 3D spatial data using (D)GPS/INS and image data can be applied to the spatial data integration and application such as contemporary digital map update, road facility management and Video GIS DB.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.

Development of Road Surface Management System using Digital Imagery (수치영상을 이용한 도로 노면관리시스템 개발)

  • Seo, Dong-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.35-46
    • /
    • 2007
  • In the study digital imagery was used to examine asphalt concrete pavements. With digitally mastered-image information that was filmed with a video camera fixed on a car travelling on road at a consistent speed, a road surface management system that can gain road surface information (Crack, Rutting, IRI) was developed using an object-oriented language "Delphi". This system was designed to improve visualized effects by animations and graphs. After analyzing the accuracy of 3-D coordinates of road surfaces that were decided using multiple image orientation and bundle adjustment method, the average of standard errors turned out to be 0.0427m in the X direction, 0.0527m in the Y direction and 0.1539m in the Z direction. As a result, it was found to be good enough to be put to practical use for maps drawn on scales below 1/1000, which are currently producted and used in our country, and GIS data. According to the analysis of the accuracy in crack width on 12 spots using a digital video camera, the standard error was found to be ${\pm}0.256mm$, which is considered as high precision. In order to get information on rutting, the physically measured cross sections of 4 spots were compared with cross sections generated from digital images. Even though a maximum error turned out to be 10.88mm, its practicality is found in work efficiency.

  • PDF

Location Tracking and Visualization of Dynamic Objects using CCTV Images (CCTV 영상을 활용한 동적 객체의 위치 추적 및 시각화 방안)

  • Park, Sang-Jin;Cho, Kuk;Im, Junhyuck;Kim, Minchan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.53-65
    • /
    • 2021
  • C-ITS(Cooperative Intelligent Transport System) that pursues traffic safety and convenience uses various sensors to generate traffic information. Therefore, it is necessary to improve the sensor-related technology to increase the efficiency and reliability of the traffic information. Recently, the role of CCTV in collecting video information has become more important due to advances in AI(Artificial Intelligence) technology. In this study, we propose to identify and track dynamic objects(vehicles, people, etc.) in CCTV images, and to analyze and provide information about them in various environments. To this end, we conducted identification and tracking of dynamic objects using the Yolov4 and Deepsort algorithms, establishment of real-time multi-user support servers based on Kafka, defining transformation matrices between images and spatial coordinate systems, and map-based dynamic object visualization. In addition, a positional consistency evaluation was performed to confirm its usefulness. Through the proposed scheme, we confirmed that CCTVs can serve as important sensors to provide relevant information by analyzing road conditions in real time in terms of road infrastructure beyond a simple monitoring role.