• Title/Summary/Keyword: 데이텀

Search Result 7, Processing Time 0.021 seconds

Evaluation of Datum Unit for Diagnostics of Journal-Bearing Systems (저널베어링의 이상상태 진단을 위한 데이텀 효용성 평가)

  • Jeon, Byungchul;Jung, Joonha;Youn, Byeng D.;Kim, Yeon-Whan;Bae, Yong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.801-806
    • /
    • 2015
  • Journal bearings support rotors using fluid film between the rotor and the stator. Generally, journal bearings are used in large rotor systems such as turbines in a power plant, because even in high-speed and load conditions, journal bearing systems run in a stable condition. To enhance the reliability of journal-bearing systems, in this paper, we study health-diagnosis algorithms that are based on the supervised learning method. Specifically, this paper focused on defining the unit of features, while other previous papers have focused on defining various features of vibration signals. We evaluate the features of various lengths or units on the separable ability basis. From our results, we find that one cycle datum in the time-domain and 60 cycle datum in the frequency domain are the optimal datum units for real-time journal-bearing diagnosis systems.

Calibration off multiple-sensor measuring system for efficient visual inspection (형상 검사를 위한 multiple-sensor 측정 시스템의 캘리브레이션 연구)

  • 김승만;손석배;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.579-582
    • /
    • 2002
  • In acquiring the surface information of a part, two types of measuring machines have been used: contact type and non-contact type. Since each measuring device has the pres and cons, an integrated measuring system is proposed to acquire the optimal point data. In order to implement the integrated measuring system, the relationship of coordinate systems between each measuring device should be established. In this paper, a new datum fixture and a calibration method for the multiple-sensor measuring system are proposed. The datum fixture is designed to interface two machines, a CMM and a laser scanner. The position of the datum fixture is calibrated by the axis information off motorized rotation stage which is used for a part setup.

  • PDF

System Architecture and Datum Reference Frame for Computer Aided Fixture Planning System (치구계획의 자동화시스템 구성 및 데이텀 체계의 결정)

  • Cho, Kyu-Kab;Jeong, Yeong-Deug
    • IE interfaces
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 1991
  • This paper deals with the development of a computer aided fixture planning system that automatically selects set-ups, set-up sequence and fixture design for prismatic parts. This study presents the hierarchical data structure for feature-based part model and the preprocessing procedure for the proposed system. The preprocessing procedure generates tools such as DDR(Degree of Dimensional Relationship), AMV(Admissible Misalignment Value) and the datum reference frame of each feature according to the proposed decision table. The proposed system is called AFIX(Automated FIXture planning system) which is implemented by using C language on the workstation. A case study for a cavity plate is presented to show the performance of the AFM.

  • PDF

Development of Coordinate Transformation Tool for Existing Digital Map (수치지도 좌표계 변환 도구 개발)

  • 윤홍식;조재명;송동섭;김명호;조흥묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • This study describes the development of coordinate transformation tool for transforming the digital map using newly derived transformation parameters which are determined from the data referred to the local geodetic datum and the geocentric datum (ITRF2000) and the distortion modelling derived from collocation method. We prepared 190 common points and used 107 points to calculate 7 transformation parameters. In order to evaluate an accuracy of coordinate transformation, 83 common points were tested. In this study, we used Molodensky-Badekas model to derive the 7 transformation Parameters. An accuracy of 0.22m was obtained applying 7 Parameters transformation and the distortion modelling together. It shows that the accuracy of coordinate transformation is improved 72% against the result of 7 parameters transformation only. We developed the transformation tool, GDKtrans, which can be transformed the digital map of scales 1/50,000, 1/25,000 and 1/5,000. We also analyzed the digital map of l/5,000 at six urban areas by GPS observations. The result shows less RMSE of about 1.9 m and large disagreement at position and features. Consequently, we suggests that l/5,000 digital map is necessary of whole revision.

Summarized Reviews on Geodetic Coordinate System and Map Projection for Practitioners in Exploration Geophysics (물리탐사 실무자를 위한 측지 좌표계와 지도 투영의 이해)

  • Lee, Seong Kon
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.236-248
    • /
    • 2016
  • In this review, the basic concepts of geodetic coordinate system and map projection are explained to practitioners in exploration geophysicists to enhance the understanding of geographic and projected coordinate system. The fundamental elements such as earth ellipsoid, geoid, geocentric and geodetic latitudes, rhumb line, and great circle are dealt with in detail. The geocentric and geodetic coordinate systems are also summarized neatly, together with coordinate conversion formulae. In addition, the concept and technique for datum transforms between local and world datum are presented, with special emphasis on Korean Geodetic System.

Calculating Cp of Position Tolerance when MMC Applied at Datum and Position Tolerance (데이텀과 위치공차에 최대실체조건이 적용되었을 경우의 위치공차의 Cp)

  • Kim, Jun-Ho;Chang, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • Process capability is well known in quality control literatures. Process capability refers to the uniformity of the process. Obviously, the variability in the process is a measure of the uniformity of output. It is customary to take the 6-sigma spread in the distribution of the product quality characteristic as a measure of process capability. However there is no reference of process capability when maximum material condition is applied to datum and position tolerance in GD&T (Geometric Dimensioning and Tolerancing). If there is no material condition in datum and position tolerance, process capability can be calculated as usual. If there is a material condition in a feature control frame, bonus tolerance is permissible. Bonus tolerance is an additional tolerance for a geometric control. Whenever a geometric tolerance is applied to a feature of size, and it contains an maximum material condition (or least material condition) modifier in the tolerance portion of the feature control frame, a bonus tolerance is permissible. When the maximum material condition modifier is used in the tolerance portion of the feature control frame, it means that the stated tolerance applies when the feature of size is at its maximum material condition. When actual mating size of the feature of size departs from maximum material condition (towards least material condition), an increase in the stated tolerance-equal to the amount of the departure-is permitted. This increase, or extra tolerance, is called the bonus tolerance. Another type of bonus tolerance is datum shift. Datum shift is similar to bonus tolerance. Like bonus tolerance, datum shift is an additional tolerance that is available under certain conditions. Therefore we try to propose how to calculate process capability index of position tolerance when maximum material condition is applied to datum and position tolerance.

Accurate Assembly and Concurrent Design of Airframe Structures (항공기체구조의 정밀조립 및 동시설계 기술)

  • Park, Mun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.811-823
    • /
    • 2000
  • In design and manufacturing airframe structures which are composed of a lot of sub-assemblies and large complex profile shapes it is difficult to reduce so called hardware variations. Accordingly cost increasing factors for manufacturing airframe parts are much more than other machine parts because of the variability of fabricated details and assemlies. To improve cost and quality, accurate assembly methods and DPD techniques are proposed in this paper which are based upon using CAD/CAM techniques, the concept of KC's and the coordinated datum and index throughout the design, tooling, manufacturing and inspection. The proposed methods are applied to produce fuselage frame assemblies and related engineering aspects are described regarding the design of parts and tools in the context of concurrent digital definition. First articles and consequent mass production of frame assemblies shows a great improvement of the process capability ratio from 0.7 by the past processes to 1.0 by the proposed methods in addition to the cost reduction due to the less number of tools, reduced total assembly times and the space compaction needed by massive inventory. The need to achieve better Cpk, however, and future studies to be investigated will be addressed briefly.