• 제목/요약/키워드: 데이터 평활

Search Result 79, Processing Time 0.083 seconds

Exponential Smoothing Temporal Association Rules for Recommendation of Temperal Products (시간 의존적인 상품 추천을 위한 지수 평활 시간 연관 규칙)

  • Jeong Kyeong Ja
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.45-52
    • /
    • 2005
  • We proposed the product recommendation algorithm mixed the temporal association rule and the exponential smoothing method. The temporal association rule added a temporal concept in a commercial association rule In this paper. we proposed a exponential smoothing temporal association rule that is giving higher weights to recent data than past data. Through simulation and case study in temporal data sets, we confirmed that it is more Precise than existing temporal association rules but consumes running time.

  • PDF

Diagnostics for Estimated Smoothing Parameter by Generalized Maximum Likelihood Function (일반화최대우도함수에 의해 추정된 평활모수에 대한 진단)

  • Jung, Won-Tae;Lee, In-Suk;Jeong, Hae-Jeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.257-262
    • /
    • 1996
  • When we are estimate the smoothing parameter in spline regression model, we deal the diagnostic of influence observations as posteriori analysis. When we use Generalized Maximum Likelihood Function as the estimation method of smoothing parameter, we propose the diagnostic measure for influencial observations in the obtained estimate, and we introduce the finding method of the proper smoothing parameter estimate.

  • PDF

USE OF TRAINING DATA TO ESTIMATE THE SMOOTHING PARAMETER FOR BAYESIAN IMAGE RECONSTRUCTION

  • SooJinLee
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.3
    • /
    • pp.175-182
    • /
    • 2001
  • We consider the problem of determining smoothing parameters of Gibbs priors for Bayesian methods used in the medical imaging application of emission tomographic reconstruction. We address a simple smoothing prior (membrane) whose global hyperparameter (the smoothing parameter) controls the bias/variance tradeoff of the solution. We base our maximum-likelihood (ML) estimates of hyperparameters on observed training data, and argue the motivation for this approach. Good results are obtained with a simple ML estimate of the smoothing parameter for the membrane prior.

  • PDF

Use of Training Data to Estimate the Smoothing Parameter for Bayesian Image Reconstruction

  • Lee, Soo-Jin
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • We consider the problem of determining smoothing parameters of Gibbs priors for Bayesian methods used in the medical imaging application of emission tomographic reconstruction. We address a simple smoothing prior (membrane) whose global hyperparameter (the smoothing parameter) controls the bias/variance tradeoff of the solution. We base our maximum-likelihood(ML) estimates of hyperparameters on observed training data, and argue the motivation for this approach. Good results are obtained with a simple ML estimate of the smoothing parameter for the membrane prior.

  • PDF

On the Prediction of the Sales in Information Security Industry

  • Kim, Dae-Hak;Jeong, Hyeong-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1047-1058
    • /
    • 2008
  • Prediction of total sales in information security industry is considered. Exponential smoothing and spline smoothing is applied to the time series of annual sales data. Due to the different survey items of every year, we recollect the original survey data by some basic criterion and predict the sales to 2014. We show the total sales in infonnation security industry are increasing gradually by year.

  • PDF

Smoothing parameter selection in semi-supervised learning (준지도 학습의 모수 선택에 관한 연구)

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.993-1000
    • /
    • 2016
  • Semi-supervised learning makes it easy to use an unlabeled data in the supervised learning such as classification. Applying the semi-supervised learning on the regression analysis, we propose two methods for a better regression function estimation. The proposed methods have been assumed different marginal densities of independent variables and different smoothing parameters in unlabeled and labeled data. We shows that the overfitted pilot estimator should be used to achieve the fastest convergence rate and unlabeled data may help to improve the convergence rate with well estimated smoothing parameters. We also find the conditions of smoothing parameters to achieve optimal convergence rate.

Noise Smoothing using the 2D/3D Magnitude Ratio of Mesh Data (메쉬 데이터의 2D/3D 면적비를 이용한 잡음 평활화)

  • Hyeon, Dae-Hwan;WhangBo, Taeg-Keun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.473-482
    • /
    • 2009
  • Reconstructed 3D data from computer vision includes necessarily a noise or an error. When these data goes through a mesh process, the different 3D mesh data from original shape comes to make by a noise or an error. This paper proposed the method that smooths a noise effectively by noise analysis in reconstructed 3D data. Because the proposed method is smooths a noise using the area ratio of the mesh, the pre-processing of unusable mesh is necessary in 3D mesh data. This study detects a peak noise and Gaussian noise using the ratio of 3D volume and 2D area of mesh and smooths the noise with respect of its characteristics. The experimental results using synthetic and real data demonstrated the efficacy and performance of proposed algorithm.

  • PDF

Temporal Association Rules with Exponential Smoothing Method (지수 평활법을 적용한 시간 연관 규칙)

  • Byon, Lu-Na;Park, Byoung-Sun;Han, Jeong-Hye;Jeong, Han-Il;Leem, Choon-Seong
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.741-746
    • /
    • 2004
  • As electronic commerce progresses, the temporal association rule is developed from partitioned data sets by time to offer personalized services for customer's interest. In this paper, we proposed a temporal association rule with exponential smoothing method that is giving higher weights to recent data than past data. Through simulation and case study, we confirmed that it is more precise than existing temporal association rules but consumes running time.