• Title/Summary/Keyword: 데이터 추론기법

Search Result 289, Processing Time 0.029 seconds

산업재해 관리 시스템 구축을 위한 데이터 웨어하우스 마이닝 기법의 활용

  • Han, Jung-Hoon;Yoo, Hoon;Lee, Won-Geun;Sim, Jong-Chil;Kim, Chang-Eun
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.225-230
    • /
    • 1998
  • 데이터 마이닝은 대용량 데이터베이스의 데이터 사이에 묻혀 있는 '패턴'을 발견하여 규칙을 추론함으로 여러 가지 유용한 지식을 캐내는 기법이다. 본 논문에서는 효과적인 재해관리 시스템을 구축하기 위해서 재해를 분석하고 대책을 마련할 수 있는 데이터 마이닝을 적용한 '데이터베이스 웨어하우스 마이닝 재해관리 데이터베이스 시스템'을 제시하고자 한다. 데이터 웨어하우스 마이닝은 다차원 데이터베이스로 구축되며 재해데이터간의 상호관련성, 특성요인별 패턴을 찾고 재해발생 가능성을 예측함으로써 재해예방의 의사결정을 지원할 수 있다.

  • PDF

A Query Processing Method for Hierarchical Structured e-Learning System (계층적으로 구조화된 이러닝 시스템을 위한 질의 처리 기법)

  • Kim, Youn-Hee;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.189-201
    • /
    • 2011
  • In this paper, we design an ontology which provides interoperability by integrating typical metadata specifications and defines concepts and semantic relations between concepts that are used to describe metadata for learning objects in university courses. And we organize a hierarchical structured e-Learning system for efficient retrieval of learning objects on many local storages that use different specifications to describe metadata and propose a query processing method based on inferences. The proposed e-Learning system can provide more accurate and satisfactory retrieval service by using the designed ontology because both learning objects that be directly connected to user queries and deduced learning objects that be semantically connected to them are retrieved.

Performance Improvement of data Mining by Input Data Discrimination (입력자료 판별에 의한 데이터 마이닝의 성능개선)

  • 이재식;이진천
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.293-303
    • /
    • 2000
  • 데이터 마이닝의 수행 예측 오차를 줄이기 위한 방법으로 하나의 문제를 여러 기법들을 결합하여 해결하고 있다. 본 연구에서는 새로운 결합 모델을 제시하고 이를 통해 예측 오차를 감소시킬 수 있는 가능성을 제시한다. 제시된 결합모델의 성능을 검증하기 위해서 국내 자동차보험 회사의 고객데이터를 바탕으로 고객이탈 예측문제를 다루었다. 결합모델의 예측결과를 의사결정나무, 사례기반추론 그리고 인공신경망 중 하나의 기법만을 사용하여 예측한 결과와 비교 평가하였다. 평가 결과, 결합 모델의 예측 적중률이 개별 기법의 예측 적중률보다 우수했다.

  • PDF

Connection location Case-based reasoning teachnique Using indirect data (간접적으로 추출된 데이터를 활용한 사례기반 접속지역 추론기법)

  • 정용진
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.189-192
    • /
    • 2004
  • The present much information of internet has to exist for innumerable user so that couldn't satisfy there's a variety of demand. so they have a demerit that search unnecessary information. However Web service is different with other mass media because It is possible that enable Mass Customization for Personalization strategy. In The paper suggest reasoning system that detect user connection location by using indirect abstraction techniques a kind of Case-based reasoning techniques.

  • PDF

Design of Web-based Phylogentic Tree Inference System Using DataBase (데이터 베이스를 이용한 웹 기반 계통수 추론 시스템 설계)

  • Kim, Shin-Suck;Hwang, Bu-Hyun
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • 계통수는 특정 객체의 분류 즉 특정 객체로부터 추출한 염기서열을 이용하여 그 객체의 소속 분류 집단을 결정하기 위해서 사용될 수 있다. 만약 특정지역에서 획득한 토끼의 종을 구분하기 위해서 이미 분류된 토끼의 염기서열들을 가지고 염기서열들과의 관계를 표현하는 계통수를 제작함으로써, 객체를 분류 할 수 있다. 계통수 제작은 기존의 계통수 제작 도구들(MEGA등)이 사용되지만, 이러한 계통수 제작 도구는 객체의 어떤 특성에 의해서 종이 나뉘어지는 가는 예측 할 수 없다. 계통수 제작에 이용되는 염기서열 데이터는 기존의 염기서열 데이터 베이스들(EMBL, GenBank, DDBJ)에서 인터넷을 이용하여 찾을 수 있지만, 계통생물학을 위해 누적된 데이터가 아니므로, 계통수 제작을 위해서는 사용이 제한적이다. 또 계통수 제작 도구을 사용하기 위해서는 자신이 관련 염기서열 데이터를 수집하여야 한다. 본 논문은 웹기반 계통수 추론 시스템을 제시한다. 본 시스템은 염기서열 데이터를 검색하여, 계통 분류 즉 계통수 제작을 위한 데이터로 저장하고, 이를 이용하여 계통수를 그릴 수 있다. 또한 이렇게 저장된 데이터는 데이터 마이닝 분류 기법을 사용하여, 각 객체 분류 집단을 모델링하며, 분류 속성을 예측할 수 있다.

  • PDF

Optimial Identification of Fuzzy-Neural Networks Structure (퍼지-뉴럴 네트워크 구조의 최적 동정)

  • 윤기찬;박춘성;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.99-102
    • /
    • 1998
  • 본 논문에서는 복잡하고 비선형적인 시스템의 최적 모델링을 우해서 지능형 퍼지-뉴럴네트워크의 최적 모델 구축을 위한 방법을 제안한다. 기본 모델은 퍼지 추론 시스템의 언어적인 규칙생성의 장점과 뉴럴 네트워크의 학습기능을 결합한 FNNs 모델을 사용한다. FNNs 모델의 퍼지 추론부는 간략추론이 사용되고, 학습은 요류 역전파 알고리즘을 사용하여 다른 모델들에 비해 학습속도가 빠르고 수렴능력이 우수하다. 그러나 기본 모델은 주어진 시스템에 대하여 퍼지 공간을 균등하게 분할하여 퍼지 소속을 정의한다. 이것은 비선형 시스템의 모델링에 있어어서 성능을 저하시켜 최적의 모델을 얻기가 어렵다. 논문에서는 주어진 데이터의 특성을 부여한 공간을 설정하기 위하여 클러스터링 알고리즘을 사용한다. 클러스터링 알고리즘은 주어진 시스템에 대하여 상호 연관성이 있는 데이터들끼리 특성을 나누어 몇 개의 클래스를 이룬다. 클러스터링 알고리즘을 사용하여 초기 FNNs 모델의 퍼지 공간을 나누고 소속함수를 정의한다. 또한, 최적화 기법중의 하나로 자연선택과 자연계의 유전자 메카니즘에 바탕을 둔 탐색 알고리즘인 유전자 알고리즘을 사용하여 주\ulcorner 진 모델에 대하여 최적화를 수행한다. 또한 본 연구에서는 학습 및 테스트 데이터의 성능 결과의 상호 균형을 얻기 위한 하중값을 가긴 성능지수가 제시된다.

  • PDF

A Hierarchical Mobile Context Model and User Context Inference Methods based on Smart Phones (스마트 폰 기반 계층적 모바일 컨텍스트 모델 및 사용자 상황 추론 기법)

  • Lee, Meeyeon;Lee, Jung-Won;Park, Seung Soo
    • Journal of Software Engineering Society
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 2011
  • Since smart phones have various embedded sensors and high portability/usability, they have emerged as suitable targets to collect information and to provide intelligent services. That is, with a smart phone, we can collect information about user's circumstances and phone usage from sensors and infer his/her current state which is the significant basis for context-aware services. However, a service system should be founded on a context model to ensure reasonable context-awareness, because context information the system needs depends on its target services. Therefore, in this paper, we propose a hierarchical mobile context model for context inference of smart phone users in their daily life. We classify high-level context which can be draw from sensing data into three levels, Context-Behavior-Situation, and define inference methods for each level. With our mobile context model, we can user's meaningful context in his/her daily life besides simple actions or states.

  • PDF

Development of Digestion Gas Production and Dewatering Cake Management in WWTP by Using Data Mining Technology (데이터 마이닝 기법을 활용한 하수처리장 소화가스 예측 및 탈수 케이크 관리 기법 개발)

  • Kim, Dongkwan;Kim, Hyosoo;Kim, Yejin;Kim, Minsoo;Piao, Wenhua;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The purpose of this study is to suggest the effective operation method by developing prediction model for the gas production rate, an indicator of the effectiveness of anaerobic digestion tank, using data mining. At the result, gas production estimate model is developed by using ANN within 10% error. It is expected to help operation of anaerobic digestion by suggesting selected parameter. Meanwhile case based reasoning is applied to develop dewatering cake management technology. Case based reasoning uses the most similar examples of past when a new problem occurs, therefore in this study, management measures are developed that proposes dewatering cake minimization with the minimum change by applying the case based reasoning to sludge disposal process.

An Efficient Reasoning Method for OWL Properties using Relational Databases (관계형 데이터베이스를 이용한 효율적인 OWL 속성 추론 기법)

  • Lin, Jiexi;Lee, Ji-Hyun;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.37 no.2
    • /
    • pp.92-103
    • /
    • 2010
  • The Web Ontology Language (OWL) has become the W3C recommendation for publishing and sharing ontologies on the Semantic Web. To derive hidden information from OWL data, a number of OWL reasoners have been proposed. Since OWL reasoners are memory-based, they cannot handle large-sized OWL data. To overcome the scalability problem, RDBMS-based systems have been proposed. These systems store OWL data into a database and perform reasoning by incorporating the use of a database. However, they do not consider complete reasoning on all types of properties defined in OWL and the database schemas they use are ineffective for reasoning. In addition, they do not manage updates to the OWL data which can occur frequently in real applications. In this paper, we compare various database schemas used by RDBMS-based systems and propose an improved schema for efficient reasoning. Also, to support reasoning for all the types of properties defined in OWL, we propose a complete and efficient reasoning algorithm. Furthermore, we suggest efficient approaches to managing the updates that may occur on OWL data. Experimental results show that our schema has improved performance in OWL data storage and reasoning, and that our approaches to managing updates to OWL data are more efficient than the existing approaches.

Web Warehousing based on Multi-Agent (다중 에이전트 기반 웹 웨어하우징)

  • 김현희;박승수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.274-276
    • /
    • 2000
  • 본 연구에서는 기존의 데이터 웨어하우징 기술과 웹 기반 기술을 통합한 웹 웨어하우징 기법에 다중 에이전트 패러다임을 적용하여 다중 에이전트 기반 웹 웨어하우징 시스템을 설계, 구현하였다. 시스템은 정보 검색 에이전트, 정보 통합 에이전트, 웹하우스 구축 에이전트로 구성된다. 정보 검색 에이전트는 여러 종류의 웹 자원을 수집한다. 정보 통합 에이전트는 정보 검색 에이전트에 의해 수집된 이형질적인 데이터를 일정한 형식으로 변환한다. 웹하우스 에이전트는 생성된 데이터를 사용하여 웹하우스를 구축하고 관리한다. 웹 데이터를 통합하기 위해 새로운 데이터 모델을 제안하였다. 의미를 갖는 지능적 객체를 생성하기 위해 여러 종류의 추론 에이전트들이 추론작업을 수행하고, 이들은 블랙보드 시스템을 통하여 작업을 통합한다. 본 시스템은 의미 정보 데이터를 사용하므로 웹 정보의 의미적 검색과 정보추출이 가능하다.

  • PDF