92

AR 38382 doleluo]x A 37 A A 2 (20104

HAEY dlolejuo]2E o] §-3
ZEHQ OWL £4 F& 7Id
(An Efficient Reasoning Method for OWL Properties using
Relational Databases)

2l ® Al of x| &' "
(Jiexi Lin) (Jihyun Lee)  (Chin-Wan Chung)

f o OWL(Web Ontology Language)e A8l LEZXE wEtn FH3t7] A% W3C
9] A4 A31¢HRecommendation)S 2 A=Atk OWL HolEY £AN ARE F3317) 94314 OWL
FE7180] go| AEAATE. 23y OWL 27152 W2IE 7Ptez X2 H7) o] e OWL
HolH & AHslv|e ofgth o]d ZAE sAsr] HsA BAY sloleulo]2e] sutgh AlxElo] Aot
Hdk of ANA"EL OWL TlolElE dolEro]=d] ARt wloleo]x WA Z8L &t} $1X
gk o] A2HELS OWLAA AYFHe RE $A(Property)S LB SHA 9tar, &9 BlAEFHA 7]
0 AMgsln ok 283 A4 8844 AFE e OWL Hojd WAd Yy uEx o
stk B =EdAe @AY dlojeluo]2d 71Nt o 27)tE vlasly, E&FHQ FE& AT N4
B 27018 AQrE 2]3 OWLAA AelsleE RE 259 &AL AYstr] 43 248 585
g & OWL dioly] W7Ad) s A&AQ B4 wie Atdc)t APANE By B w=id
A A 27107 OWL dlols] AR 8 &g dis) /)& 27viEg o £ %8 e, OWL
deole] 74l ¥HiE 7)&e] Wit o] A&A otk

FINE 1 LERA, AWHES, OWL, 58

Abstract The Web Ontology Language (OWL) has become the W3C recommendation for publi~
shing and sharing ontologies on the Semantic Web. To derive hidden information from OWL data, a
number of OWL reasoners have been proposed. Since QWL reasoners are memory-based, they cannot
handle large-sized OWL. data. To overcome the scalability problem, RDBMS-based systems have been
proposed. These systems store OWL data into a database and perform reasoning by incorporating the
use of a database. However, they do not consider complete reasoning on all types of properties defined
in OWL and the database schemas they use are ineffective for reasoning. In addition, they do not
manage updates to the OWL data which can occur frequently in real applications.

In this paper, we compare various database schemas used by RDBMS-based systems and propose
an improved schema for efficient reasoning. Also, to support reasoning for all the types of properties
defined in OWL, we propose a complete and efficient reasoning algorithm. Furthermore, we suggest
efficient approaches to managing the updates that may occur on OWL data. Experimental results show
that our schema has improved performance in OWL data storage and reasoning, and that our
approaches to managing updates to OWL data are more efficient than the existing approaches.
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1. Introduction

As the next generation of the World Wide Web,
the Semantic Web aims at providing machine pro-
cessable information on the Web. With such a vision,
the Web can reach its full potential only if it
becomes a place where data can be shared and
processed by automated tools as well as by people.

Ontologies are the backbones that provide seman-
tics to the Semantic Web by defining shared and
common vocabularies, Tom Gruber gives the formal
definition of ontology as “an ontology is a specifi-
cation of a.conceptualization,” which is widely accep—
ted by most researchers currently.

For publishing and sharing ontologies on the Web,
the Web Ontology Language (OWL) [1] has been
proposed by W3C as a recommendation. Since OWL
gives well-defined information about data, reasoning
can be performed on them and hidden information
can be derived. A number of OWL reasoners [2-4]
have been proposed to manage OWL data and per-
form the reasoning. These OWL reasoners perform
TBox (assertions on concepts) as well as ABox
(assertions on individuals) reasoning. Since OWL
reasoners perform reasoning in memory, they can-
not handle large-sized OWL data.

To overcome the scalability problem of OWL rea-
soners, RDBMS-based systems [5-8] have been
proposed. These systems store OWL data into a
database and perform reasoning on them in the
database. However, the database schemas they use
are ineffective for reasoning. In addition, they do
not consider complete reasoning about all types of
properties defined in OWL. Also, they do not manage
the changes of OWL data which are happened
frequently in real applications.

In this paper, we propose different efficient reaso-
ning techniques of ontologies in relational database.
The reasoning scope can be considered as ABox
reasoning related to OWL properties. These techni-
ques include an improved database schema design,
a complete reasoning algorithm for all types of OWL
properties, and efficient approaches for change man-
agement of OWL data.

An Improve property based schema design:
After comparing several schemas that are used by
existing RDBMS-based systems, we propose an

improve schema based on the property-based
schema [9]. We name it the improved property-
based schema. With our schema, reasoning for
inverseOf properties can be done in memory during
the storage of OWL data and no additional change
management of inverseOf properties is necessary.

The ISFT reasoning algorithm: Since facts
derived over the first iteration of reasoning can
introduce other new facts, reasoning needs to be
performed iteratively until no new facts can be
generated. A complete reasoning algorithm for inver-
seOf, symmetric and transitive properties has been
proposed by ONTOMS [8]. It is called the IST
reasoning algorithm since it follows the sequence
<inverseOf reasoning, symmetric reasoning, transitive
reasoning>. To support complete reasoning for all
types of OWL properties, we propose the ISFT
reasoning algorithm taking functional properties into
account. Also, we analyze several possible appro-
aches for functional reasoning and propose a graph
based algorithm which we prove to be the most
efficient.

Maintenance of ISFT reasoning: When updates
are applied to OWL data after reasoning, the related
changes should be managed to maintain the integrity of
the OWL data. For example, the insertion of facts can
introduce more new facts, and the deletion of facts can
lead to deletion of some derived facts. Update mana-
gement of transitive reasoning is most expensive
because a large number of facts can be generated or
deleted. In this paper, we analyze the approaches for
update management of OWL data and propose a
disjoint graph algorithm which has the best perfor-
mance in maintenance of transitive reasoning.

The remainder of this paper is organized as fol-
lows. Section 2 introduces other works based on
RDBMS systems. Section 3 gives the definitions of
OWL properties. Section 4 compares different schema
design approaches and proposes the improved pro-
perty schema. With such a schema, Section 5 pro-
poses a complete reasoning algorithm for all types
of OWL properties. After discussing the change
management of the OWL data in Section 6, the
experimental results are shown in Section 7. The
conclusion and the future work are presented in
Section 8.
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2. Related Work

To overcome the scalability problem of OWL
reasoners, RDBMS-based systems have
been proposed. They store OWL data into a data-

several

base and perform reasoning on them in the data-
base. These RDBMS based systems include SnoBase
[5], the Instance Store [6], DLDB {7] and ONTOMS [8].

SnoBase [5], which has been merged into the
IBM Integrated Ontology Development Toolkit (IODT)
[10], employs the database schema which uses only
one universal relation to store class, property and
instance definitions. For ontology with large amount
of instances, the univeral relation will be extremely
large and thus leads to big scanning overhead. In
addition, SnoBose attempts to perform reasoning by
incorporating SQL triggers. However, the runtime
depth level of trigger cascading supported in RDBMSs
is limited, which leads to difficulties or Impossibi-
lities in performing reasoning of OWL data.

The Instance Store [6] uses a relation to store
class defnitions, another relation to store instances,
and four relations (Type, Equivalents, Parents and
Children) to maintain class hierarchy information.
The Instance Store performs reasoning for instances
which do not have properties (referred to as role—
free ABox in [6]). Thus, no reasoning for OWL
properties is performed. This limitation prevents
Instance Store from processing ordinary OWL data.

DLDB [7] maintains one class relation for each
class and one property relation for each property so
that instances could be scattered into related rela-
tions instead of one large relation. This schema is
neat and has better performance in reasoning for
instances since the length of relations are greatly
reduced. DLDB uses FaCT [2), an OWL reasoner,
to get complete hierarchy inforration of class and
properties. However, DLDB does not support any
instance reasoning for OWL data so that we could
not make comparison of reasoning performance with
DLDB.

ONTOMS [8] employs a class-based database
schema which maintains a relation for each class
containing associated properties as its attributes.
This schema becomes more complicated than that
of previous RDBS-based systems but has better

performance in instance reasoning than the schema
of DLDB. Detailed analysis of the difference of two
schemas and their query processing performance
are given in [8). ONTOMS supports instance rea-
soning for inverseOf, symmetric and transitive pro-
perties (referred to as IST properties in [8]). The
instance reasoning algorithm in ONTOMS (referred
to as IST reasoning algorithm in [8]) emphasizes
on the sequence of performing reasoning so as to
avoid iterative processing. However, the IST reaso-
ning algorithm does not consider other two properties
defined in OWL, ie., the functional property and
the inverseFunctional property, which can derive
new facts from the original OWL data.

A limitation that is shared by all the above men-
tioned system is the fact that they do not manage
updates to OWL data which can occur in real app-
lications.

3. OWL and OWL Properties

Web Ontology Language (OWL) [1] is a semantic
markup language developed as a vocabulary exten-
sion of ontology data. Different from RDF [11], OWL
provides more expressive power for describe onto-
logies such as equality and inequality of classes
and properties, cardinality restrictions of properties
and five characteristics of properties, ie., inverseOf
property, symmetric property, transitive property,
functional property and in?erseFunctional property.
The definitions of the five types of OWL properties
can be given as follows.

Defnition 1 (inverseQf Property). Property P is
specified as inverseOf property of property P if for
all individuals x and y: P(x,y) implies P'(y,x) where
x 1is related to y by property P.

Defnition 2 (symmetric Property). Property P is
specified as symmetric if for all individuals x and
y: P(x,y) implies P(y,x).

Defnition 3 (transitive Property). Property P is
specified as transitive if for all individuals x, y and
z: P(x,y) and P(y,z) implies P(x,2).

Defnition 4 (functional Property). Property P is
specified as functional if for all individuals x, y and
z: P(x,y) and P(x,z) implies y is equal to z.

Defnition 5 (inverseFunctional Property). Property
P is specified as an inverseFunctional property which
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<owl:Class rdf:ID="Professor”>
<rdfs:subClassOf rdfiresource=“Person”/>

</owl:Class>

<owl:ObjectProperty rdf:ID="degreeFrom™>
<rdfs:domain rdfresource="#Person”/>
<rdfs:range rdfiresource=“#University”/>
<owl:inverseOf rdfiresource="hasAlumnus™/>

</owh:ObjectProperty>

<Professor rdfiabout="Prof1”>
<degreeFrom rdf:about=“Univ1”’/>
<memberOf rdf:about=“Dept1”/>
<teachesCourse rdf:about=“Course1”/>
<teachesCourse rdf:about=“Course2”/>

</Professor>

Figure 1 An example of OWL document

is inverseOf property P’ if for all individuals x, y
and z: P(y,x) and P(z,x) implies y is equal to z.

Figure 1 presents an example of an OWL document
(which is also referred to as OWL data). In Figure
1, the degreeFrom property is defined as inverseOf
the hasAlumnus property, and Profl has a degree
from Univl. Apparently, after reasoning, the fact
that Univl has Profl as an alumnus should be
derived.

4. Database Schema Design

To load the OWL data into a database and per-
form reasoning, there are several optional schema
designs. After analyzing several database schemas,
we propose an improved schema design which is
proved to be more efficient in reasoning of OWL
properties.

SnoBase [5] uses an instance based schema that
has only one relation. The relation stores class, pro—
perty and instance definitions. This schema is simple
and allows OWL data to be easily parsed and loaded
into the database. However, because it only uses
one universal relation, the relation may be of extre-
mely large size which may greatly deteriorate the
performance of reasoning.

Another alternative schema is to create a relation
for each class, ie., the class relation. Currently, this
schema is employed by ONTOMS [8]. The class
relation contains associated properties as its attri-
butes. This may correspond to the entity-relational
approach frequently used when design database
schemas. When a property is multi-valued, a sepa-

rate class-property relation is assigned to the spe-

cific class and property. This schema requires
higher storage cost because the OWL data have to
be arranged to be put into the corresponding column.
Although the reasoning cost may not be as great
as that of the instance-based schema, the class-
based schema does have difficulties in reasoning.
For example, when storing a newly derived fact
(triple) into the database, we have to check the
type of the subject instance first in order to add it
to the corresponding relation. Checking the type of
an instance can be very expensive if there are a
large number of instances. As a result, reasoning
with such a schema is not straightforward.

A property-based schema is proposed which takes
into account the performance of both query evalua-
tion and reasoning [9]. The property schema creates
a relation for each property. The property relation
stores the (subject, object) pairs of a property toge-
ther with the domain type and the range type of a
subject/object. With such a schema, we do not
need to check the type of the subject in a derived
fact before inserting it into the database, and the
reasoning for OWL properties becomes much more
straightforward.

Although the property-based schema is efficient
and straightforward in reasoning for OWL properties,
it leads to redundant entries in the database. To
overcome this problem, we propose an improved
property-based schema which only keeps one rela-
tion for two properties that are inverseOf each other.
Figure 2 shows the imporved property-based rela-
tions. For example, when parsing the OWL data, if
Profl), we
simply treat it as the fact degreeFrom(Profl, Univl)

we get the fact hasAlumnus(Univl,

and store it into the degreeFrom table. Thus, table
hasAlumnus is not necessary to be generated. As a

teachesCourse degreeFrom
Domain | Range Domain | Range
Profl Coursel Profl Univi
Profl Coursel
memberOf § has Alumus g
Domain | Range § Domain | Range g
Profl Deptl E Univi Profl f
] ]
] '

Figure 2 Improved Property-Based Relations
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result, reasoning for inverseOf properties is perfor—
med in memory during the storage of OWL data.
This leads -to much more efficient reasoning for
three reasons. First, reasoning in memory is much
faster than in a database. Second, inverseOf reaso-
ning is only performed once. Another advantage is
that maintenance after data changes can be performed
more easily.

5. Reasoning for OWL Properties

To provide enhanced reasoning about a property,
OWL defines five types of properties: inverseOf,
symmetric, transitive, functional and inverseFunctional.
According to the characteristic of each property,
new facts can be derived. This Section gives the
definitions of OWL property reasoning, analyzes the
reasoning tasks and proposes an efficient algorithm
for functional algorithm. Finally, we propose a com-—
plete reasoning algorithm for the five types of pro-
perties and give the proof to its completeness. To
our knowledge, no existing RDBMS-based systems
handle reasoning for these five properties.

5.1 Definitions of OWL Property Reasoning

Since the OWL property reasoning mentioned in
this paper is based on relation database, all the
reasoning is performed with database relations. De-
finition 6 states the meaning for a relation of a
property.

Defnition 6 (Relation of a property). Relation R
of a property P is the set of (x,y) in P.

According to the definitions of OWL properties
given in Section3, the defitions of inverseOf, sym-
metric, transitive, functional and inverseFunctional
reasoning for property P or the relation of P are
given below.

Defnition 7 (inverseQOf reasoning). Let property P
be inverseOf property P’, R be the relation of P,
and R’ be the relation of P'. The inverseOf reaso—
ning for P or R is the process of adding (v,x) to R
for all (x,y) in R’, if (y,x) is not in R. [8]

Defition 8 (symmetric reasoning). Let P be a
symmetric property and R be the relation of P. The
symmetric reasoning for P or R is the process of
adding (y,x) to R for all (x,y) in R, if (y,x) is not
in R. [8]

Defnition 9 (transitive reasoning). Let P be a

transitive property énd R be the relation of P. The
transitive reasoning for P or R is the process of
computing the transitive closure of R. [8]

Defrition 10 (functional reasoning). Let P be a
functional property and R be the relation of P. The
funtional reasoning for P or R is the process of
finding the fact y=z if (x,y) and (x,2) are in R.

Defnition 11 (inverseFunctional reasoning). Let P
be an inverseFunctional property which is inverseOf
property P’, R be the relation of P, and R’ be the
relation of P’. The inverseFuntional reasoning for P
or R is the process of finding the fact y=z if (y,x)
and (z,x) are in R’.

To simplify the reasoning procedures, we introduce
Lemma 1 which states that symmetric property also
possesses the characteristic of inverseOf property.
Therefore, symmetric reasoning can be treated as a
special case of inverseOf reasoning and the algori-
thms for symmetric reasoning and inverseOf reaso-
ning are similar,

Lemma 1. Symmetric property can be seen as
inverseOf itself.

As far as transitive reasoning is concerned, we
use a graph based algorithm [12] with complexity
O(V(V+E)) to compute the transitive closure of a
relation, We first construct a graph of every (x,y)
in R where in the graph, x and y are vertices and
x->y is an edge. Then we compute the transitive
closure of the graph in memory and insert the newly
generated edges into the database as new facts.

Since an inverseFunctional property P is inverseOf
another property P° which is a functional property,
invereseFunctional reascning for P can be divided
into two steps. First, perform inverseOf reasoning
for P. Second, perform functional reasoning for P
Notice these two steps of reasoning can be perfor-
med respectively. As a result, if P is marked as
inverseOf P’ and P’ is marked as functional, we can
omit the inverseFunctional reasoning for P. We do
not consider inverseFunctional reasoning in later
sections in this paper.

According to Definition8, equal instances can be
found using the characteristic of the functional pro-
perty. Consequently, the functional reasoning trig-
gers the sameAS reasoning which is defined in
Definitonl2.
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Defnition 12 (sameAs reasoning). Let a and b be
two equal instances. The sameAs reasoning for
(a=b) is the process: adding (bx) for all (a,x) if
(b,x) is not in the database; adding (x,b) for all
(x,a) if (x,b) is not in the database; adding (ay)
for all (b,y) is (a,y) is not in the database and add-
ing (y,a) for all (y,b) if (y,a) is not in the database
where x and y are any instances.

Finally, we consider the algorithm for functional
reasoning. Since functional reasoning generates a
set of equal instances, sameAs reasoning needs to
be performed. However, since sameAs reasoning
can generate more new facts which leads to itera-
tive reasoning until no more facts can be generated.
Sectiond.2 discusses the algorithms for functional
reasoning.

5.2 An Efficient Functional Reasoning Algorithm

As can be seen from the definitions of QWL pro-
perty reasoning, functional reasoning causes the
sameAs reasoning to be performed. This leads to
iterative reasoning. In this section, we first analyze
a naive approach and a direct approach for func-
tional reasoning. Last, we propose an efficient
graph-based reasoning algorithm.

52.1 A naive functional reasoning algorithm

A naive functional reasoning algorithm performs
the reasoning in the sequence <Functional reasoning,
sameAs reasoning, Functional reasoning, sameAs
reasoning--> until there are no new facts that are
generated. Figure 3 shows the reasoning procedures.
Relation R is the original relation defined as func-
tional. After functional reasoning is performed for
the first time, we get the equal instance set S:
(b=c), (e=f) and (a=d). Then we perform sameAs
reasoning to obtain relation R’. Next, functional
reasoning is performed for the second time to obtain
the equal instance set S. Reasoning is performed
iteratively until there are no new facts that can be
generated. The disadvantage of the naive approach
lies in that duplicated facts are derived frequently
(see the dotted part in Figure 3) which can be
seen as unnecessary reasoning.

5.2.2 A direct functional reasoning algorithm

A direct functional reasoning algorithm performs
the functional reascning iteratively until no new

equal instances can be found, and finally performs
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Figure 3 The reasoning procedures of the naive

algorithm
R S 3 5
a|b|==]b=c |==2]b=g |=>[= T
dle a=d b=t
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gli
hlj
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x|d

Figure 4 The reasoning procedures of the direct
algorithm

select R1.u2, R2.u2 from RR1,R R2, S
where R1.ul=S.s1 and R2.ul=S.s2

Figure 5 The matching method described in SQL

the sameAs reasoning. It finds the equal instance
sets by using a matching method such as an SQL
(as shown in Figure 5). This approach avoids gene—
rating duplicated facts. Figure 4 shows the reasoning
steps.

523 A graph based functional reasoning algorithm

A graph based functional reasoning algorithm
builds a directed graph according to the relation of
the functional property and gets the complete set of
equal instances. Like the direct algorithm, sameAs
reasoning is performed last. This algorithm builds a
graph consisting of tuples in the functional relation.
For example, for tuple (ab) in relation R, a and b
are vertices and a->b is an edge in the graph.

With such a graph, finding the equal instance
sets can be achieved by merging the child nodes of
the node whose out-degree is bigger than 1. When
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Algorithm Graph_Based (Relation R)

begin

1. Construct Graph g corresponding to Relation R
2. boolean foundAll ;= false;

3. while (foundAll) de

4.  foreverynodeNiing do

5 if outDegreeOf(Ni) > 1 then

6. Merger the children of Ni;

7 Put the children nodes to the equal set
8 hashtable;

foundAll = true;

10.  for every node Niin g do

11. if outDegreeOfiNi) > 1 then

b

12. foundAll := false;
13. break;
end

Figure 6 The graph based algorithm
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Figure 7 The procedures of finding equal instance
sets in the graph based algorithm

the graph reaches a final state, the out-degree of
every node should be less than or equal to 1. Figure
6 shows the algorithm and Figure 7 shows the
merging procedure. The complexity of the graph
based algorithm is O(nm) where n is the number
of nodes and m is the number of merging steps.
The value of m depends on the structure of the
graph and cannot be expected. Usually m is much
smaller than n. Even so, the complexity in worst
case will be O(n?).

5.3 An Algorithm for Complete OWL Property

Reasoning

An OWL property can be seen as a subset of
the rule that introduce new facts to the ontology.
In order to use such rules in databases, active data-
base systems [13] have been developed. They use
forward chaining [14] to iteratively or recursively
compute new facts until there are no additional
facts that can be generated. To avoid iterative rea-
soning, ONTOMS [8] proposed an IST reasoning
algorithm for inverseOf, symmetric and transitive
properties and proved its completeness. Theoreml
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provides the basis in proving the completeness of
the IST reasoning algorithm.

Theorem 1. Suppose property P is inverseOf pro—
perty P’. By following the sequence <inverseOf rea-
soning, symmetric reasoning, transitive reasoning>
for P and P, the resulting relations of P and P’ are
inverseOf each other, symmetric and transitive [8].

According to Theorem 1, if a property P is inver-
seOf property P’, P is symmetric and transitive,
then after performing IST reasoning for property P
and P’, the relation of P is symmetric, transitive
and inverseOf the relation of P’. Thus, no more
facts can be generated by performing any inverseOf,
symmetric or transitive reasoning for P, which means
the reasoning for P is complete.

However, when functional and inverseFunctional
properties are taken into account, sameAs reasoning
can also be aroused. We have to find out when the
sameAs reasoning should be performed in order to
avoid iterative reasoning. Within the improved pro-
perty based schema, it is straightforward that it
makes no difference whether sameAs reasoning is
performed before or after the inverseOf and sym-
metric reasoning. However, sameAs reasoning must
be performed before transitive reasoning.

Figure 8 shows an example in which sameAs
reasoning is performed before transitive reasoning.
In Figure 8, R is the original relation, (b=d) and
(f=c) are information about equal instances. After
sameAs reasoning, new facts (a,d), (b,e) and (x,c)
are added to R such that R becomes R’. After
transitive reasoning for R’, we get R”. If sameAs
reasoning is performed gfter transitive reasoning,
we cannot get the fact (ae) in R”. Therefore,
sameAs reasoning must performed before transitive
reasoning.

The <IST> reasoning sequence suggested by the
IST reasoning algorithm successfully solved the
iterative and recursive computation problem. Inspired
by the IST reasoning algorithm and the observation
that functional reasoning which causes sameAs rea-
soning must be done before the transitive reasoning,
we propose an ISFT reasoning algorithm which
supports complete reasoning for all types of OWL
properties. Theorem?2 describes the sequence of
ISFT reasoning.
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Figure 8 sameAs reasoning performed before transitive
reasoning

Theorem 2. With respect to the improved property-
based schema, a complete set of new facts can be
obtained by following the sequence <inverseOf
reasoning, symmetric reasoning, Functional reason-
ing, transitive reasoning>>,

Proof of Theorem?2

According to Theoreml, reasoning following the
sequence <IST> is complete. With respect to the
improved property schema, sameAs reasoning, which
is caused by functional reasoning, can be done
before or after the IS reasoning. After sameAs
reasoning, the result set of transitive reasoning is
complete. Thus, the reasoning by following the
sequence <ISFT> is complete.

6. Maintenance of ISFT Reasoning

In real applications, OWL data undergo frequent
updates including insertions, deletions and updates
of instances. After such changes, additional reason-
ing is required to maintain the integrity of the OWL
data. For example, new facts may be generated due
to the insertion of a fact and some derived facts
may be deleted due to the deletion of the original
fact. One approach to manage the changes is to
parse the OWL data again, reload them into the
database and perform reasoning again. However, if
OWL data are of large sizes, it may take a long
time to do so. An alternative approach is to make
small adjustments of the database according to the
updates. This section discusses how the latter app-
roach manages the changes of OWL data.

Referring to the schemas other than the improved
property-based schema, after changes of OWL data,
additional management for inverseOf and symmetric
reasoning is required. For example, if the fact deg-

reeFrom(Profl, Univl) is delete, the fact hasAlumnus
(Univl, Profl) should also be deleted. However, with
respect to the improved property-based schema, no
extra management is needed for inverseOf and sym-
metric reasoning. Insertion, deletion and updates can
be directly performed in the corresponding relation.

Transitive reasoning is the process of computing
the transitive closure of a relation. Since mainten-
ance in transitive reasoning is the most expensive,
we mainly focus on discussing the maintenance of
transitive reasoning, We compare two existing algo-
rithms of maintaining the transitive closure and
propose a disjoint graphs algorithm which is suitable
for case that the graph of a relation can be divided
into many disjoint graphs.

The first algorithm is a naive memory based
algorithm that reconstructs the graph of the whole
relation and computes the transitive closure of the
graph in memory. Newly generated facts are put
back into the database.

Another algorithm is a database based algorithm
that uses pure SQL to maintain the transitive clo-
sure. This algorithm was proposed in [15]. Since
the algorithm is performed in a database, frequent
use of relation joins is unavoidable.

After examining the characteristics of ontology
data, we find that the graph of a transitive relation
can be usually divided in to smaller disjoint groups.
Based on such an observation, we design a disjoint
graph algorithm for the maintenance of the transitive
closure. Using union find algorithm, the graph can
be divided into disjoint graph groups at the begin-
ning and each group can be marked with a group
ID (GID). The group ID is maintained after updates.
Notice that after edge insertion, two groups can be
merged and after edge deletion, a group can be split
into small groups.

Figure 9 shows an example of edge insertion and
Figure 10 shows the algorithm. In Figure 9, when
edge (3/4) is inserted, it affects two groups, ie.,
Groupl and Group2, but not the Group3. Thus, Group3
does not need to be brought to memory for graph
constructing. Also, Group3 does not affect the com-—
putation of the transitive closure of Groupl and
Group2. After computation, Groupl and Group2 are
merged into one group.
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Figure 9 Transitive closure maintenance after edge

insertion

Algoritlmn Disjoint_Graphs_insertion (Relation R, (a.b))
/% (a,b) is the tuple to be inserted into Relation R */
begin
1. int g1, 22}
2. relation (, t*;
3. gl = gelect (first_row) GID from R where n2 = a;
fifind a*s growp
4. @ = select {first_row) GID from R where nl = b
/Hind b’s growp
5. t= select n1,u2 from R where GID=g! or GID=g2
6. Compute the transtive closure of t and get new
generated relation t*;
{/fperform transitive reasoning with only two groups
7. insert (t*, g1) into R;
8. update R set GID = gl where GID = 22;
f/maintain the group id
end

Figure 10 Disjoint Graph Algorithm After Insertion

An example of the edge deletion is shown in
Figure 11. When the edge (34) is deleted, only
Groupl is affected. Group3 does not need to be con-
sidered during transitive closure maintenance. After
transitive closure computation Groupl is split into
two small groups. The algorithm is similar with
that of insertion.

The disjoint graphs algorithm saves the cost of

N1 |'N2 | GID ‘N1| N2:|.GID
1 2 1 2 1
2 |3 f::> 2 |3 |1
1 3 1 3 1
4 5 4 5 2
10 {11 10 |11 13
11 {12 11 (12 ]3
10 {12 |3

o
(=
—
135

e L L Dl e L £75 1 A ¥F) RUNY Py Y RS Py

ALV o F RV

Figure 11 Transitive closure maintenance after edge
deletion

conveying unaffected groups into memory, and the
computing of their transitive closures.

7. Experimentation

7.1 Experimental Environment

The implementation of the algorithm are written
in Java. We use OWL API Parser to parse the OWL
data and IBM DB2 UDB 82 as an RDBMS. Qur
experiment was performed on a Windows XP sys-
tem running a 3GHz Pentium 4 processor with
512MB of main memory.

Three data sets are used for experiment. The first
data set DS1 is the University Benchmark Data
(LUBM) [16] which is a widely used OWL bench-
mark data set. LUBM not only generates data with
arbitrary size but also has a complex data schema.
The ontology of LUBM is about universities. It
contains inverseOf properties and transitive proper—
ties. Therefore, LUBM is appropriate for evaluating
the instance reasoning. We generated various sizes
of OWL data: IMB, 5MB, I0MB, 50MB, 100MB,
and 500MB.

The second data set DS2 is a synthetic data set
designed to test the performance of the functional
reasoning with respect to the three algorithms pro-
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posed in Section 5. The data set contains pairs (1,2),
(1,3), (24), (25), (36), 4D, 58), (19), (810) -,
which requires at least four times of iteration to
get the complete equal instance sets.

The last data set DS3 is a synthetic data set
used to test the performance of maintenance of
transitive closure. The data set consists of pairs
(1,2), (23), =+, (n-1, n), (n+l, n+2), (n+2, n+3), -
where (n,n+1) can be inserted to test updates.

DS2 and DS3 are directly generated and inserted
into the database for testing instead of retrieving
from the OWL ontology. DS2 can have arbitrary
vertices and edges. Also DS3 can be generated
with arbitrary depth.

O,
@ O

5% & OO @@

QD@D+ D

DSs2 DS3
Figure 12 Structure Of Ds2 And Ds3

7.2 Storage and Reasoning Time

We tested the storage time and the reasoning
time for the class-based schema and the improved
property-based schema with data set DS1 of various
sizes.

Figure 13 shows the comparison result of storage
time between the class-based schema and the
improved property-based schema. It is evident the
improved property based schema outperforms the
class based schema. This can be attributed to the
fact that data parsed from an OWL document must
be arranged into the corresponding columns in the
class relation when using the class based schema.

As stated in Section 4, inverseOf and symmetric
reasoning is performed during storage time when
using the improved property based- schema. Thus,
additional inverseOf and symmetric reasoning is not
required after the OWL data are stored into the
database. Figure 14 compares reasoning time.

%43 28 7Y 101
Storage time
[ ——Ciass based [ONTOMS]  —a— Improved property based |
1600
1400 /:
1200
§ 1000 /7
g 800 -
® 600 /’//
#o0 Ajf/
200
0 —_—
1 10 50 100 500
Data size {MB)

Figure 13 Storage time of class based schema and

improved property based schema

Reasoning Time
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0 y v —
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Figure 14 Reasoning time of class based schema

and improved property based schema

7.3 Functional Reasoning Time

As described in Section 5, we have proposed three
algorithms for functional reasoning. Figure 15 shows
the performance of the three algorithms with data
set DS2. Since the naive algorithm performs redun-
dant reasoning, its performance deteriorates rapidly
as the data size increases. The direct algorithm out-
performs the naive algorithm by avoiding the redun-
dant reasoning. However, the matching algorithm to
find the equal instance sets iteratively still remains
inefficient. Compared with the former two algorithms,
the graph based algorithm has the best performance.
With data set DS2, the reasoning time of the graph
based algorithm increases linearly.

7.4 Transitive Closure Maintenance Time

We tested the performance of transitive closure
maintenance among the naive memory based algori-
thm, the DB based algorithm and the graph based
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Figure 15 Functional Reasoning time with data set
DS2

Transitive Closure Maintenance Time
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Figure 16 Transitive closure maintenance time with
data set DS3
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Figure 17 Transitive closure maintenance time with
data set DS1

algorithm. Figure 16 and Figure 17 illustrate the
performance of the transitive closure of a relation
with data set DS3 and DS, respectively.

Due to the poor performance of relational joins,
the DB based algorithm has worse performance

than the naive memory based algorithm when the

number of disjoint graphs is not large. However,
with a large number of disjoint graphs, the naive
memory based algorithm is less efficient because it
re~calculates the transitive closure of the whole
graph. In the 100MB data set from DS1, there are
200 universities defined, thus forming 200 disjoint
graphs. In the same way, we can construct 1000
disjoint graphs in 500MB sized data set DS1. With
such a large number of disjoint graphs, the disjoint
graphs algorithm performs much better than the
naive memory based algorithm and the DB based

algorithm.

8. Conclusion and Future Work

There exist various RDBMS-based systems for
storage and reasoning over OWL data. Since these
systems use ineffective database schemas, they exhi-
bit deteriorated reasoning performance. Also, they
do not support complete reasoning for all types of
OWL properties or update management of OWL data.

To solve these problems, this paper proposes effi-
cient techniques for reasoning over ontologies in a
relational database. These techniques include an im-
proved database schema design, a complete reason—
ing algorithm for all types of OWL properties, and
an efficient approach for managing updates to OWL
data. Experimental results show that the improved
database schema is more efficient than the existing
database schema and that our approach for change
management of OWL data is efficient than existing
approaches.

Currently, the management of ontologies is per-
formed in a single database. For our future work,
we plan to focus on the research of reasoning for
distributed ontologies in a distributed environment.
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