본 논문에서는 배관의 ISO 도면 교환파일을 이용하여 AR/VR모델을 실시간으로 생성하는 방법을 소개한다. 도면 교환 파일 중에서 산업 표준으로 활용되는 IDF 파일을 분석했으며, 속성 정보의 추출과 함께 형상을 파라메트릭한 방법으로 정의하는 방법을 사용하였다. 이 방법을 통해서 파일 크기가 작은 도면 교환 파일을 사용함으로써 원거리 데이터 교환이 용이하면서도 형상과 속성을 모두 전달할 수 있는 효과를 가질 수가 있다. 이 과정에서 본 논문에서는 배관과 컴포넌트의 형상을 템플릿 형태로 정의해 놓았으며, 이를 통해 배관의 도면 교환 파일로부터 실시간으로 배관 형상을 생성함과 동시에 설계 정보와 함께 AR/VR모델로 가시화가 됨을 검증하였다.
본 논문에서는 유한요소해석 프로그램 Abaqus를 이용하여 고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석 절차를 제시하고 해석 결과를 비교·분석하였다. 기둥에 축하중과 화재가 가해지는 상황을 해석에 반영하기 위해 Abaqus에서 제공하는 순차 결합 열-응력 해석을 사용하였다. 우선 콘크리트 단면에 대한 열전달 해석을 수행하여 검증한 뒤, 이를 3차원 요소로 확장하고 구조해석과 결합하여 해석을 수행하였다. 해석 과정에서 수렴성 및 정확성에 영향을 미치는 인장 증강 효과와 초기 불완전성을 고려하여 모델링하였다. 해석 결과는 74개 실험 데이터와 비교하였으며, 내화시간을 기준으로 평균 6%의 오차를 나타냄에 따라 유한요소해석을 통해 철근콘크리트 기둥의 내화성능을 예측할 수 있게 되었다.
수산 양식장 질병 감염의 확산을 사전에 차단을 위해서는 양식장의 수질 환경 및 생육 어류의 상태를 실시간 모니터링하면서 어류의 질병을 예측하는 시스템이 필요하다. 어류 질병 예측의 기존 연구는 이미지 처리 기법이 대부분이었으나 최근에는 딥러닝 기법을 통한 질병 예측방법의 연구가 활발히 진행되고 있다. 본 논문에서는 수산 양식장에서 발생할 수 있는 넙치의 질병을 딥러닝 기술로 예측하는 방법에 대한 연구결과를 소개하고자 한다. 이 방법은 양식장에서 수집된 카메라 영상에 데이터 증강과 전처리 포함하여 질병 인식률의 성능을 높인다. 이것을 통해 질병 어류를 조기 발견으로 양식 어업에서 어류 집단 폐사 등 어업 재해를 예방하고 지역 수산 양식장으로 어류의 질병 확산 피해를 줄여 매출액 감소 차단될 것으로 기대한다.
2020년 이후 COVID-19에 따른 학습방법의 변화는 글로벌 에듀테크 시장의 성장세로 이어지면서 에듀테크 시장의 두드러진 성장과 가속화 현상과 함께 직업능력개발과 에듀테크의 결합이 가속화될 것으로 전망된다. 본 연구에서는 에듀테크의 역할과 기능, 그리고 향후 평생직업능력개발 분야에서의 활용과 기대를 수렴하여 에듀테크를 포괄적으로 재정의(working definition)하였다. 재정의의 이면에는 인공지능(AI), 빅데이터, 가상/증강현실(VR/AR), 클라우드 서비스 등의 첨단기술이 더욱 확장된 디지털화된 직업훈련 시대를 앞당기는 혁신기술로 역할이 강화될 것이라는 전제가 함축되어 있으며, 이를 통해 개별화된 학습경험 맞춤형 학습의 평생직업능력개발 체계를 지향하게 될 것이다. 이 같은 에듀테크의 정의에 기초하여 본 연구의 주요 내용은 에듀테크 기술동향을 분석하면서 직업훈련에 전파, 공유하기 위한 목적에서 실제 테크놀로지가 교육 및 직업훈련에 접목된 수준이 어느 정도인지를 전문가 서면 인터뷰를 바탕으로 살펴보고, 직업훈련의 관점에서 유의미한 시사점을 찾아 에듀테크 기반 평생직업능력개발 선도사업 모델을 제안한다.
Ship detection in synthetic aperture radar (SAR) images is an important application in marine monitoring for the military and civilian domains. Over the past decade, object detection has achieved significant progress with the development of convolutional neural networks (CNNs) and lot of labeled databases. However, due to difficulty in collecting and labeling SAR images, it is still a challenging task to solve SAR ship detection CNNs. To overcome the problem, some methods have employed conventional data augmentation techniques such as flipping, cropping, and affine transformation, but it is insufficient to achieve robust performance to handle a wide variety of types of ships. In this paper, we present a novel and effective approach for deep SAR ship detection, that exploits label-rich Electro-Optical (EO) images. The proposed method consists of two components: a data augmentation network and a ship detection network. First, we train the data augmentation network based on conditional generative adversarial network (cGAN), which aims to generate additional SAR images from EO images. Since it is trained using unpaired EO and SAR images, we impose the cycle-consistency loss to preserve the structural information while translating the characteristics of the images. After training the data augmentation network, we leverage the augmented dataset constituted with real and translated SAR images to train the ship detection network. The experimental results include qualitative evaluation of the translated SAR images and the comparison of detection performance of the networks, trained with non-augmented and augmented dataset, which demonstrates the effectiveness of the proposed framework.
Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.
Journal of Information Technology Applications and Management
/
제28권6호
/
pp.1-21
/
2021
This study is about Augmented Reality Game (AR Game) applied to Pokemon Go, which has recently been a sensational game. We focused on and analyzed the intention for continuous use as a dependent variable. We made hypotheses through previous studies and used spatial presence, perceived interactivity, perceived pleasure, and sickness as independent variables. Immersion was set up as a mediating variable. We conducted the study using 198 data, which people who experienced AR games responded. The results were as follows. First, spatial presence and perceived pleasure were found to have a significant effect on immersion, as in previous studies. Second, the relationship between sickness and immersion, which were shown to have a negative relationship in previous studies, we found that variables had a positive relationship unlike previous studies and rejected the hypothesis. Third, perceived interactivity, which is one of the crucial variables to affect the intention for continuous use, we found not to have a significant relationship among perceived interactivity, immersion, and the intention for continuous use. This result is opposite from previous studies, and further research on this issue is expected. We conducted this study with an individual user's view on immersion and the intention for continuous use rather than focusing on technical or political topics. Besides, this study has a significance that drew different results from previous studies and explored people who relish AR games with the characteristics of personal variables.
W-대역(75-110GHz)은 기존 5G 대역에 비해 최소 10배 이상의 대역폭 활용이 가능한 대역이다. 따라서 가상 및 증강 현실과 같이 빠른 속도와 저지연이 요구되는 미래 이동통신에 적합한 대역 중 하나이다. 그러나 파장이 짧아 높은 경로손실을 가지며, 대기환경에도 매우 민감한 특성을 가진다. 따라서 향후 W-대역 통신 시스템 개발을 위해서는, 채널 환경에 따른 경로손실의 특성을 분석할 필요가 있다. 본 논문에서는 W-대역 경로손실의 특성을 분석하기 위해 랜덤 포레스트 기법을 이용, 다양한 채널 환경 파라미터에 따른 경로손실 데이터를 통해 거리 구간에 따른 채널 파라미터의 영향성을 분석하였다. 시뮬레이션 결과, 근거리에서의 경로손실은 거리가 가장 높은 영향성을 가지며, 채널 환경 요소는 거의 무시된다. 그러나 거리 구간이 길어질수록 거리의 영향성이 감소하는 동시에 클러터와 강우량의 영향성이 증가하였다.
Journal of Information Technology Applications and Management
/
제29권1호
/
pp.47-57
/
2022
The purpose of this study is to analyze the current status of augmented reality picture books, which have been steadily developed since 2010, as a genre of electronic picture books, and to reveal how children's immersion in augmented reality picture books differs from paper picture books. To this end, 30 augmented reality picture books on the market were analyzed according to genre, life theme, implementation method, and augmented reality scene ratio. As a result of the study, it was found that the genre of picture books was in the order of information fairy tales, daily fairy tales, and historical fairy tales, and there were no traditional or fantasy fairy tales. Animals and plants accounted for about half of the life topics, and in some cases, there were only a few or no other life topics. In the augmented reality implementation scene, it consisted of only one page in the early days, but all pages are now possible to implement augmented reality due to technology development, production cost reduction, and improved hardware performance of smartphones. It was found that the augmented reality implementation method used CD-ROM in the early days, but gradually became possible to implement using only mobile phones and tablets that were easy for readers to access. In addition, after presenting four picture books to eight 5-year-old infants, the immersion time was measured and the immersion behavior was observed. As a result, augmented reality picture books showed higher immersion[immersion time, immersion behavior] than paper picture books, but compared by literature genre, life fairy tales were higher in paper picture books and natural fairy tales in augmented reality picture books. It was higher when presenting augmented reality picture books after presenting paper picture books according to the order of presentation of picture book types. The results of this study suggest that more diverse life topics and augmented reality picture books in the genre of children's literature should be developed to increase the utilization of augmented reality picture books. In addition, considering that there are differences in immersion between types, literary genres, and reading experience [presentation order], it is expected to increase the educational effect by using picture books complementarily.
Yeong-In Lee;Jin-Nyeong Heo;Ji-Hwan Moon;Ha-Young Kim
한국컴퓨터정보학회논문지
/
제29권8호
/
pp.23-32
/
2024
NVS는 여러 각도와 위치에서 수집한 이미지를 이용해 3차원 공간을 재현하는 연구 분야로, 증강현실, 가상현실, 자율주행, 로봇 네비게이션 등에서 중요성이 커지고 있다. 최근 주목받는 3D-GS 방법론은 기존 NeRF 보다 고품질 장면 생성, 빠른 학습 시간, 실시간 렌더링이 가능하지만, Gaussian points의 밀도 조정 과정에서 전체 Gaussian points 수의 증가로 메모리 소모량 상승과 렌더링 속도가 저하되는 문제가 있다. 이를 개선하기 위해 본 논문에서는 불필요한 Gaussian points를 제거하여 메모리 효율성을 높이는 Gaussian blending 기법과 Gaussian points 감소로 인한 표현력 손실을 최소화하는 깊이 정보 반영 손실 함수를 제안하여 모델의 성능을 보완한다. 실험 결과, Tanks & Temples 벤치마크 데이터셋에서 성능을 유지하면서 Gaussian points 수를 최대 4% 감소시키는 효과를 확인하였다. 따라서 본 논문에서 제안한 방법론은 3D-GS 모델의 경량화 가능성을 실험적으로 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.