• Title/Summary/Keyword: 데이터 오차

Search Result 2,265, Processing Time 0.025 seconds

A personalized TV service under Open network environment (개방형 환경에서의 개인 맞춤형 TV 서비스)

  • Lye, Ji-Hye;Pyo, Sin-Ji;Im, Jeong-Yeon;Kim, Mun-Churl;Lim, Sun-Hwan;Kim, Sang-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.279-282
    • /
    • 2006
  • IP망을 이용한 IPTV 방송 서비스가 새로운 수익 모델로 인정받고 현재 국내의 KT, SKT 등이 IPTV 시범서비스를 준비하거나 진행 중에 있다 이 IPTV 서비스는 이전의 단방향 방송과는 달리 사용자와의 인터렉션을 중시하는 양방향 방송을 표방하기 때문에 지금까지의 방송과는 다른 혁신적인 방송서비스가 기대된다. 하지만 IPTV 서비스에 있어서 여러 통신사와 방송사가 참여할 수 있을 것으로 보여지는 것과는 달리 실상은 몇몇 거대 통신기업이 자신들의 망을 이용하는 가입자들을 상대로 한정된 사업을 벌이고 있다. 이는 IPTV 서비스를 위한 인프라가 구축되어 있지 않고 방통융합망의 개념을 만족시키기 위해 서비스 개발자가 알아야 할 프로토콜들이 너무나 많기 때문이다. 따라서 본 논문에서는 이러한 상황을 타개할 수 있는 수단을 Open API로 제안한다. 맞춤형 방송을 위한 시나리오를 TV-Anytime의 벤치마킹과 유저 시나리오를 참고하여 재구성하고 이 시나리오로부터 IPTV 방송 서비스를 위한 방통융합망의 기본적이고 강력한 기능들을 Open API 함수로 정의하였다. 여기에서의 방송 서비스는 NDR, EPG, 개인 맞춤형 광고 서비스를 말하며 각 서비스를 위한 서버는 통합망 위에 존재하고 이 서버들이 개방하는 API들은 다른 응용프로그램에 의해 사용되는 것이기 때문에 가장 기본적인 기능을 정의하게 된다. 또한, 제안한 Open API 함수를 이용하여 개인 맞춤형 방송 응용 서비스를 구현함으로써 서비스 검증을 하였다. Open API는 웹서비스를 통해 공개된 기능들로써 게이트웨이를 통해 다른 망에서 사용할 수 있게 된다. Open API 함수의 정의는 함수 이름, 기능, 입 출력 파라메터로 이루어져 있다. 사용자 맞춤 서비스를 위해 전달되는 사용자 상세 정보와 콘텐츠 상세 정보는 TV-Anytime 포럼에서 정의한 메타데이터 스키마를 이용하여 정의하였다.가능하게 한다. 제안된 방법은 프레임 간 모드 결정을 고속화함으로써 스케일러블 비디오 부호화기의 연산량과 복잡도를 최대 57%감소시킨다. 그러나 연산량 감소에 따른 비트율의 증가나 화질의 열화는 최대 1.74% 비트율 증가 및 0.08dB PSNR 감소로 무시할 정도로 작다., 반드시 이에 대한 검증이 필요함을 알 수 있었다. 현지관측에 비해 막대한 비용과 시간을 절약할 수 있는 위성영상해석방법을 이용한 방법은 해양수질파악이 가능할 것으로 판단되며, GIS를 이용하여 다양하고 복잡한 자료를 데이터베이스화함으로써 가시화하고, 이를 기초로 공간분석을 실시함으로써 환경요소별 공간분포에 대한 파악을 통해 수치모형실험을 이용한 각종 환경영향의 평가 및 예측을 위한 기초자료로 이용이 가능할 것으로 사료된다.염총량관리 기본계획 시 구축된 모형 매개변수를 바탕으로 분석을 수행하였다. 일차오차분석을 이용하여 수리매개변수와 수질매개변수의 수질항목별 상대적 기여도를 파악해 본 결과, 수리매개변수는 DO, BOD, 유기질소, 유기인 모든 항목에 일정 정도의 상대적 기여도를 가지고 있는 것을 알 수 있었다. 이로부터 수질 모형의 적용 시 수리 매개변수 또한 수질 매개변수의 추정 시와 같이 보다 세심한 주의를 기울여 추정할 필요가 있을 것으로 판단된다.변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전략은 존재하므로 이러한 전략을 개발 및 활용할 수 있으며, 특히, 한국주식시장에 적합한 거래전략은 반전거래전략이고, 이 전략의 유용성은 투자자가 설정한 투자기간보다

  • PDF

Accuracy Analysis of FKP for Public Surveying and Cadastral Resurvey (공공측량 및 지적재조사 사업 적용을 위한 FKP 정밀도 분석)

  • Park, Jin Sol;Han, Joong-Hee;Kwon, Jay Hyoun;Shin, Han Sup
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.23-24
    • /
    • 2014
  • NGII (National Geographic Information Institute) has been providing VRS (Virtual Reference Station) service so that could determine precise positioning in real time since 2007. However, since the VRS service has to maintain the connected status with VRS server, the number of users who can use VRS service are limited by capacity of VRS server. To solve this problem, NGII has been providing FKP (Virtual Reference Station) service using one way telecommunication from November 1, 2012. Therefore, it is predicted that the usage of FKP service will increase in public surveying and cadastral resurveying in the future. However, the studies with respect to analysis of FKP precision for applying to public surveying and cadastral resurveying is not conducted enough. In this study, to analyse the application possibility of FKP on the public surveying and cadastral resurveying, the two kind analysis were performed. First is the analysis of accuracy according to the configuration of reference station of FKP and VRS. One is consisted of same reference stations, another is consisted of different reference stations. Second is the accuracy anlalysis of horizontal and vertical positioning acquiring VRS and FKP data in various measurement environment based on VRS regulation. Result of first study, Positioning accuracy according to the configuration of the reference stations satisfies related regulation. However, accuracy of FKP in case of different reference stations is worse than in case of same reference stations.. The result of second test shows that the horizontal precision of FKP and VRS in good measurement environment satisfy the allowed precision. However, in some case, horizontal precision of FKP and VRS in poor measurement environment exceed the allowed precision. In addition, the number of exceeding the allowed precision in the FKP is more than the VRS. The vertical precision of the VRS satisfy related work provision. In conclusion, the result of this study shows that the FKP only in open area should be used for public survey and cadastral resurvey. Therefore the additional studies with respect to the improvement of FKP precision should be conducted.

Prediction of Correct Answer Rate and Identification of Significant Factors for CSAT English Test Based on Data Mining Techniques (데이터마이닝 기법을 활용한 대학수학능력시험 영어영역 정답률 예측 및 주요 요인 분석)

  • Park, Hee Jin;Jang, Kyoung Ye;Lee, Youn Ho;Kim, Woo Je;Kang, Pil Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.509-520
    • /
    • 2015
  • College Scholastic Ability Test(CSAT) is a primary test to evaluate the study achievement of high-school students and used by most universities for admission decision in South Korea. Because its level of difficulty is a significant issue to both students and universities, the government makes a huge effort to have a consistent difficulty level every year. However, the actual levels of difficulty have significantly fluctuated, which causes many problems with university admission. In this paper, we build two types of data-driven prediction models to predict correct answer rate and to identify significant factors for CSAT English test through accumulated test data of CSAT, unlike traditional methods depending on experts' judgments. Initially, we derive candidate question-specific factors that can influence the correct answer rate, such as the position, EBS-relation, readability, from the annual CSAT practices and CSAT for 10 years. In addition, we drive context-specific factors by employing topic modeling which identify the underlying topics over the text. Then, the correct answer rate is predicted by multiple linear regression and level of difficulty is predicted by classification tree. The experimental results show that 90% of accuracy can be achieved by the level of difficulty (difficult/easy) classification model, whereas the error rate for correct answer rate is below 16%. Points and problem category are found to be critical to predict the correct answer rate. In addition, the correct answer rate is also influenced by some of the topics discovered by topic modeling. Based on our study, it will be possible to predict the range of expected correct answer rate for both question-level and entire test-level, which will help CSAT examiners to control the level of difficulties.

A Study on a Quantified Structure Simulation Technique for Product Design Based on Augmented Reality (제품 디자인을 위한 증강현실 기반 정량구조 시뮬레이션 기법에 대한 연구)

  • Lee, Woo-Hun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.85-94
    • /
    • 2005
  • Most of product designers use 3D CAD system as a inevitable design tool nowadays and many new products are developed through a concurrent engineering process. However, it is very difficult for novice designers to get the sense of reality from modeling objects shown in the computer screens. Such a intangibility problem comes from the lack of haptic interactions and contextual information about the real space because designers tend to do 3D modeling works only in a virtual space of 3D CAD system. To address this problem, this research investigate the possibility of a interactive quantified structure simulation for product design using AR(augmented reality) which can register a 3D CAD modeling object on the real space. We built a quantified structure simulation system based on AR and conducted a series of experiments to measure how accurately human perceive and adjust the size of virtual objects under varied experimental conditions in the AR environment. The experiment participants adjusted a virtual cube to a reference real cube within 1.3% relative error(5.3% relative StDev). The results gave the strong evidence that the participants can perceive the size of a virtual object very accurately. Furthermore, we found that it is easier to perceive the size of a virtual object in the condition of presenting plenty of real reference objects than few reference objects, and using LCD panel than HMD. We tried to apply the simulation system to identify preference characteristics for the appearance design of a home-service robot as a case study which explores the potential application of the system. There were significant variances in participants' preferred characteristics about robot appearance and that was supposed to come from the lack of typicality of robot image. Then, several characteristic groups were segmented by duster analysis. On the other hand, it was interesting finding that participants have significantly different preference characteristics between robot with arm and armless robot and there was a very strong correlation between the height of robot and arm length as a human body.

  • PDF

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery for Inaccessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • The paper presents several satellite models and satellite image decomposition methods for inaccessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in $1^{st}$, $2^{nd}$ and $3^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\Phi$(phi) correlated highly with positional parameters could be assigned to constant values. For inaccessible area, satellite images were decomposed, which means that two consecutive images were combined as one image, The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1st order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model (역전파 신경망 모델을 이용한 기준 작물 증발산량 산정)

  • Kim, Minyoung;Choi, Yonghun;O'Shaughnessy, Susan;Colaizzi, Paul;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.111-121
    • /
    • 2019
  • Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island (제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가)

  • Jeon, Hyunho;Cho, Sungkeun;Chung, Il-Moon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.835-848
    • /
    • 2021
  • In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.

The Development and Application of the Officetel Price Index in Seoul Based on Transaction Data (실거래가를 이용한 서울시 오피스텔 가격지수 산정에 관한 연구)

  • Ryu, Kang Min;Song, Ki Wook
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.33-45
    • /
    • 2021
  • Due to recent changes in government policy, officetels have received attention as alternative assets, along with the uplift of office and apartment prices in Seoul. However, the current officetel price indexes use small-size samples and, thus, there is a critique on their accuracy. They rely on valuation prices which lag the market trend and do not properly reflect the volatile nature of the property market, resulting in 'smoothing'. Therefore, the purpose of this paper is to create the officetel price index using transaction data. The data, provided by the Ministry of Land, Infrastructure and Transport from 2005 to 2020, includes sales prices and rental prices - Jeonsei and monthly rent (and their combinations). This study employed a repeat sales model for sales, jeonsei, and monthly rent indexes. It also contributes to improving conversion rates (between deposit and monthly rent) as a supplementary indicator. The main findings are as follows. First, the officetel price index and jeonsei index reached 132.5P and 163.9P, respectively, in Q4 2020 (1Q 2011=100.0P). However, the rent index was approximately below 100.0. Sales prices and jeonsei continued to rise due to high demand while monthly rent was largely unchanged due to vacancy risk. Second, the increase in the officetel sales price was lower than other housing types such as apartments and villas. Third, the employed approach has seen a potential to produce more reliable officetel price indexes reflecting high volatility compared to those indexes produced by other institutions, contributing to resolving 'smoothing'. As seen in the application in Seoul, this approach can enhance accuracy and, therefore, better assist market players to understand the market trend, which is much valuable under great uncertainties such as COVID-19 environments.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.