• Title/Summary/Keyword: 데이터 암호화

Search Result 1,031, Processing Time 0.023 seconds

Design and Hardware Implementation of High-Speed Variable-Length RSA Cryptosystem (가변길이 고속 RSA 암호시스템의 설계 및 하드웨어 구현)

  • 박진영;서영호;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.9C
    • /
    • pp.861-870
    • /
    • 2002
  • In this paper, with targeting on the drawback of RSA of operation speed, a new 1024-bit RSA cryptosystem has been proposed and implemented in hardware to increase the operational speed and perform the variable-length encryption. The proposed cryptosystem mainly consists of the modular exponentiation part and the modular multiplication part. For the modular exponentiation, the RL-binary method, which performs squaring and modular multiplying in parallel, was improved, and then applied. And 4-stage CSA structure and radix-4 booth algorithm were applied to enhance the variable-length operation and reduce the number of partial product in modular multiplication arithmetic. The proposed RSA cryptosystem which can calculate at most 1024 bits at a tittle was mapped into the integrated circuit using the Hynix Phantom Cell Library for Hynix 0.35㎛ 2-Poly 4-Metal CMOS process. Also, the result of software implementation, which had been programmed prior to the hardware research, has been used to verify the operation of the hardware system. The size of the result from the hardware implementation was about 190k gate count and the operational clock frequency was 150㎒. By considering a variable-length of modulus number, the baud rate of the proposed scheme is one and half times faster than the previous works. Therefore, the proposed high speed variable-length RSA cryptosystem should be able to be used in various information security system which requires high speed operation.

Design and implementation of smart card-based multi-authentication mechanism for digital contents delivery (디지털콘텐츠 유통을 위한 스마트카드기반의 다중인증처리방법설계 및 구현)

  • Kim, Yong;Lee, Tae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.1
    • /
    • pp.23-46
    • /
    • 2002
  • With explosively increasing digital contents, library and Information center should have a new role between knowledge providers and knowledge users as information brokering organization. Electronic transaction system should be required for performing this brokering service since economic value is added to information and knowledge in information society. The developments and changes around library are keeping up with increasing building digital library and digitalizing printed sources. With the rapidly changing circumstances, the Internet is currently witnessing an explosive growth. By serving as a virtual information resource. the Internet can dramatically change the way business is conducted and Information is provided. However because of features o( the Internet like openness and information sharing, it has fundamental vulnerabilities in security issues. For Instance, disclosure of private information and line eavesdropping such as password, banking account, transaction data on network and so on are primary obstruction factors to activation of digital contents delivery on network. For high network security and authentication, this paper looks at smart card technologies and proposes multi-authentication protocol based on smart card on open network, implements and analyzes it.

Deciphering the Genetic Code in the RNA Tie Club: Observations on Multidisciplinary Research and a Common Research Agenda (RNA 타이 클럽의 유전암호 해독 연구: 다학제 협동연구와 공동의 연구의제에 관한 고찰)

  • Kim, Bong-kook
    • Journal of Science and Technology Studies
    • /
    • v.17 no.1
    • /
    • pp.71-115
    • /
    • 2017
  • In 1953, theoretical physicist George Gamow attempted to explain the process of protein synthesis by hypothesizing that the base sequence of DNA encodes a protein's amino acid sequence and, in response, proposed the nucleic acid-protein information transfer model, which he dubbed the "diamond code." After expressing interest in discussing the daring hypothesis, contemporary biologists, including James Watson, Francis Crick, Sydney Brenner, and Gunther Stent, were soon invited to join the RNA Tie Club, an informal research group that would also count biologists and various researchers in physics, mathematics, and computer engineering among its members. In examining the club's formation, growth, and decline in multidisciplinary research on deciphering the genetic code in the 1950s, this paper first investigates whether Gamow's idiosyncratic approach could be adopted as a collaborative research forum among contemporary biologists. Second, it explores how the RNA Tie Club's research agenda could have been expanded to other relevant research topics needing multidisciplinary approach? Third, it asks why and how the RNA Tie Club dissolved in the late 1950s. In answering those questions, this paper shows that analyses on the intersymbol correlation of the overlapping code functioned to integrate diverse approaches, including sequence decoding and statistical analysis, in research on the genetic code. As those analyses reveal, the peculiar approaches of the RNA Tie Club could be regarded as a useful method for biological research. The paper also concludes that the RNA Tie Club dissolved in the late 1950s due to the disappearance of the collaborative research agenda when the overlapping code hypothesis was abandoned.

Secure Certificates Duplication Method Among Multiple Devices Based on BLE and TCP (BLE 및 TCP 기반 다중 디바이스 간 안전한 인증서 복사 방법)

  • Jo, Sung-Hwan;Han, Gi-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • A certificate is a means to certify users by conducting the identification of the users, the prevention of forgery and alteration, and non-repudiation. Most people use an accredited certificate when they perform a task using online banking, and it is often used for the purpose of proving one's identity in issuing various certificates and making electronic payments in addition to online banking. At this time, the issued certificate exists in a file form on the disk, and it is possible to use the certificate issued in an existing device in a new device only if one copies it from the existing device. However, most certificate duplication methods are a method of duplication, entering an 8-16 digit verification code. This is inconvenient because one should enter the verification code and has a weakness that it is vulnerable to security issues. To solve this weakness, this study proposes a method for enhancing security certificate duplication in a multi-channel using TCP and BLE. The proposed method: 1) shares data can be mutually authenticated, using BLE Advertising data; and 2) encrypts the certificate with a symmetric key algorithm and delivers it after the certification of the device through an ECC-based electronic signature algorithm. As a result of the implementation of the proposed method in a mobile environment, it could defend against sniffing attacks, the area of security vulnerabilities in the existing methods and it was proven that it could increase security strength about $10^{41}$ times in an attempt of decoding through the method of substitution of brute force attack existing method.

Attacking OpenSSL Shared Library Using Code Injection (코드 주입을 통한 OpenSSL 공유 라이브러리의 보안 취약점 공격)

  • Ahn, Woo-Hyun;Kim, Hyung-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.4
    • /
    • pp.226-238
    • /
    • 2010
  • OpenSSL is an open-source library implementing SSL that is a secure communication protocol. However, the library has a severe vulnerability that its security information can be easily exposed to malicious software when the library is used in a form of shared library on Linux and UNIX operating systems. We propose a scheme to attack the vulnerability of the OpenSSL library. The scheme injects codes into a running client program to execute the following attacks on the vulnerability in a SSL handshake. First, when a client sends a server a list of cryptographic algorithms that the client is willing to support, our scheme replaces all algorithms in the list with a specific algorithm. Such a replacement causes the server to select the specific algorithm. Second, the scheme steals a key for data encryption and decryption when the key is generated. Then the key is sent to an outside attacker. After that, the outside attacker decrypts encrypted data that has been transmitted between the client and the server, using the specified algorithm and the key. To show that our scheme is realizable, we perform an experiment of collecting encrypted login data that an ftp client using the OpenSSL shared library sends its server and then decrypting the login data.

ID-Based Proxy Re-encryption Scheme with Chosen-Ciphertext Security (CCA 안전성을 제공하는 ID기반 프락시 재암호화 기법)

  • Koo, Woo-Kwon;Hwang, Jung-Yeon;Kim, Hyoung-Joong;Lee, Dong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.64-77
    • /
    • 2009
  • A proxy re-encryption scheme allows Alice to temporarily delegate the decryption rights to Bob via a proxy. Alice gives the proxy a re-encryption key so that the proxy can convert a ciphertext for Alice into the ciphertext for Bob. Recently, ID-based proxy re-encryption schemes are receiving considerable attention for a variety of applications such as distributed storage, DRM, and email-forwarding system. And a non-interactive identity-based proxy re-encryption scheme was proposed for achieving CCA-security by Green and Ateniese. In the paper, we show that the identity-based proxy re-encryption scheme is unfortunately vulnerable to a collusion attack. The collusion of a proxy and a malicious user enables two parties to derive other honest users' private keys and thereby decrypt ciphertexts intended for only the honest user. To solve this problem, we propose two ID-based proxy re-encryption scheme schemes, which are proved secure under CPA and CCA in the random oracle model. For achieving CCA-security, we present self-authentication tag based on short signature. Important features of proposed scheme is that ciphertext structure is preserved after the ciphertext is re-encrypted. Therefore it does not lead to ciphertext expansion. And there is no limitation on the number of re-encryption.

Low-Gate-Count 32-Bit 2/3-Stage Pipelined Processor Design (소면적 32-bit 2/3단 파이프라인 프로세서 설계)

  • Lee, Kwang-Min;Park, Sungkyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • With the enhancement of built-in communication capabilities in various meters and wearable devices, which implies Internet of things (IoT), the demand of small-area embedded processors has increased. In this paper, we introduce a small-area 32-bit pipelined processor, Juno, which is available in the field of IoT. Juno is an EISC (Extendable Instruction Set Computer) machine and has a 2/3-stage pipeline structure to reduce the data dependency of the pipeline. It has a simple pipeline controller which only controls the program counter (PC) and two pipeline registers. It offers $32{\times}32=64$ multiplication, 64/32=32 division, $32{\times}32+64=64$ MAC (multiply and accumulate) operations together with 32*32=64 Galois field multiplication operation for encryption processing in wireless communications. It provides selective inclusion of these algebraic logic blocks if necessary in order to reduce the area of the overall processor. In this case, the gate count of our integer core amounts to 12k~22k and has a performance of 0.57 DMIPS/MHz and 1.024 Coremark/MHz.

Association between ITGB2 Genetic Polymorphisms and Tuberculosis (ITGB2 유전자 다형성과 결핵 사이의 연관성 연구)

  • Jin, Hyun-Seok;Lee, Sang-In;Park, Sangjung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.118-125
    • /
    • 2018
  • Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB), but the genes associated with the host immune system can be attributed to the development of TB. The ITGB2 gene encodes the integrin beta 2 chain CD18 protein and is present on chromosome 21. The integrin beta 2 chain is an integrin expressed in leukocytes and plays a very important role in leukocyte maturation and attachment. ITGB2 plays an important role in the phagocytosis of MTB and the aggregation of leukocytes in MTB infections. This study examined the genetic polymorphisms of the ITGB2 gene between the TB case and normal control using Korean genomic and epidemiologic data. As a result, a statistically significant correlation was confirmed in 10 SNPs. The most significant SNP was rs113421921 (OR=0.69, CI: 0.53~0.90, $P=5.8{\times}10^{-3}$). In addition, rs173098, one of the significant 10 SNPs, is possibly located in a binding motif with the transcription factor cofactor p300, and can affect ITGB2 gene expression. These findings suggest that the pathogenesis of TB may be influenced by a range of genetic factors related to the immune function of the host, e.g., the reactions associated with the recruitment and attachment of leukocytes. The results of this study could be used to predict the infection control for tuberculosis in a patient-tailored manner.

Analysis on Importance of Information Security Factors for Smart Work using AHP -Based on the Mobile Office for Small Businesses- (AHP를 활용한 스마트워크 정보보호 요소의 중요도 분석 -중소기업의 모바일 오피스를 중심으로-)

  • Kang, Kyung-Hoon;Lim, Chae-Hong;Lim, Jong-In;Park, Tae-Hyoung
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.415-426
    • /
    • 2013
  • Smart work has recently introduced as a way to solve problems such as greenhouse gas emissions, low birth rate and aging as well as to improve productivity. Because of development of ICT infrastructure and the proliferation of smart devices, the mobile office has the most commonly used within types of smart work in Korea. But the adoption of the mobile office in small businesses is only half of that of large corporations. The security issue appears to be one of the biggest obstacles to the introduction of smart work in small businesses. Therefore, the purpose of this study is to analyze the information security factors that should be considered when the mobile office is introduced to small businesses. By analyzing the previous studies, the information security factors of the mobile office are classified 5 groups composed of 24 factors. 5 groups are terminals, applications and platforms, networks, servers and users. According to the survey result using AHP, 'User' was drawn to the most important group, and 'Data Encryption', 'Wireless LAN Control' and 'Terminal Recovery When Leaving' were drawn to the important information security factors of the mobile office among 24 factors.

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.