Browse > Article
http://dx.doi.org/10.15324/kjcls.2018.50.2.118

Association between ITGB2 Genetic Polymorphisms and Tuberculosis  

Jin, Hyun-Seok (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University)
Lee, Sang-In (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University)
Park, Sangjung (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.50, no.2, 2018 , pp. 118-125 More about this Journal
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB), but the genes associated with the host immune system can be attributed to the development of TB. The ITGB2 gene encodes the integrin beta 2 chain CD18 protein and is present on chromosome 21. The integrin beta 2 chain is an integrin expressed in leukocytes and plays a very important role in leukocyte maturation and attachment. ITGB2 plays an important role in the phagocytosis of MTB and the aggregation of leukocytes in MTB infections. This study examined the genetic polymorphisms of the ITGB2 gene between the TB case and normal control using Korean genomic and epidemiologic data. As a result, a statistically significant correlation was confirmed in 10 SNPs. The most significant SNP was rs113421921 (OR=0.69, CI: 0.53~0.90, $P=5.8{\times}10^{-3}$). In addition, rs173098, one of the significant 10 SNPs, is possibly located in a binding motif with the transcription factor cofactor p300, and can affect ITGB2 gene expression. These findings suggest that the pathogenesis of TB may be influenced by a range of genetic factors related to the immune function of the host, e.g., the reactions associated with the recruitment and attachment of leukocytes. The results of this study could be used to predict the infection control for tuberculosis in a patient-tailored manner.
Keywords
CD18; Genetic association study; ITGB2; Mycobacterium tuberculosis; SNP;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zaffran Y, Zhang L, Ellner JJ. Role of CR4 in Mycobacterium tuberculosis-human macrophages binding and signal transduction in the absence of serum. Infect Immun. 1998;66:4541-4544.
2 Mahasirimongkol S, Yanai H, Nishida N, Ridruechai C, Matsushita I, Ohashi J, et al. Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun. 2009;10:77-83. https://doi.org/10.1038/gene.2008.81.   DOI
3 Mahasirimongkol S, Yanai H, Mushiroda T, Promphittayarat W, Wattanapokayakit S, Phromjai J, et al. Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis. J Hum Genet. 2012;57:363-367. https://doi.org/10.1038/jhg.2012.35.   DOI
4 Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990;75:1037-1050.
5 Schittenhelm L, Hilkens CM, Morrison VL. beta2 integrins as regulators of dendritic cell, monocyte, and macrophage function. Front Immunol. 2017;8:1866. https://doi.org/10.3389/fimmu.2017.01866.   DOI
6 Schlesinger LS, Azad AK, Torrelles JB, Esteban R, Isabelle V, Vojo D. Determinants of phagocytosis, phagosome biogenesis and autophagy for Mycobacterium tuberculosis: Kaufmann HE, Rubin E, Britton WJ, van Helden P, editors. Handbook of tuberculosis. 1st ed. Hoboken: Wiley-Blackwell; 2017. P1-22.
7 Roberts LL, Robinson CM. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines. Immunology. 2014;141:39-51. https://doi.org/10.1111/imm.12164.   DOI
8 Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527-534. https://doi.org/10.1038/ng.357.   DOI
9 Jin HS, Park S. Association of the CD226 genetic polymorphisms with risk of tuberculosis. Biomed Sci Letters. 2017;23:89-95. https://doi.org/10.15616/BSL.2017.23.2.89.   DOI
10 Miller EN, Jamieson SE, Joberty C, Fakiola M, Hudson D, Peacock CS, et al. Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians. Genes Immun. 2004;5:63-67. https://doi.org/10.1038/sj.gene.6364031.   DOI
11 Moller M, Hoal EG. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis (Edinb). 2010;90:71-83. https://doi.org/10.1016/j.tube.2010.02.002.   DOI
12 Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis. 1978;117:621-624.
13 van der Eijk EA, van de Vosse E, Vandenbroucke JP, van Dissel JT. Heredity versus environment in tuberculosis in twins: the 1950s United Kingdom Prophit Survey Simonds and Comstock revisited. Am J Respir Crit Care Med. 2007;176:1281-1288. https://doi.org/10.1164/rccm.200703-435OC.   DOI
14 Mould AP, Humphries MJ. Regulation of integrin function through conformational complexity: not simply a knee-jerk reaction? Curr Opin Cell Biol. 2004;16:544-551. https://doi.org/10.1016/j.ceb.2004.07.003.   DOI
15 von Andrian UH, Chambers JD, McEvoy LM, Bargatze RF, Arfors KE, Butcher EC. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci U.S.A. 1991;88:7538-7542.   DOI
16 Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395:82-86. https://doi.org/10.1038/25764.   DOI
17 Chung KJ, Mitroulis I, Wiessner JR, Zheng YY, Siegert G, Sperandio M, et al. A novel pathway of rapid TLR-triggered activation of integrin-dependent leukocyte adhesion that requires Rap1 GTPase. Mol Biol Cell. 2014;25:2948-2955. https://doi.org/10.1091/mbc.E14-04-0867.   DOI
18 Roberts LL, Robinson CM. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines. Immunology. 2014;141:39-51. https://doi.org/10.1111/imm.12164.   DOI
19 Johnson CM, Cooper AM, Frank AA, Orme IM. Adequate expression of protective immunity in the absence of granuloma formation in Mycobacterium tuberculosis-infected mice with a disruption in the intracellular adhesion molecule 1 gene. Infect Immun. 1998;66:1666-1670.
20 Ghosh S, Saxena RK. Early effect of Mycobacterium tuberculosis infection on Mac-1 and ICAM-1 expression on mouse peritoneal macrophages. Exp Mol Med. 2004:36:387-395. https://doi.org/10.1038/emm.2004.51.   DOI
21 Velasco-Velazquez MA, Barrera D, Gonzalez-Arenas A, Rosales C, Agramonte-Hevia J. Macrophage--Mycobacterium tuberculosis interactions: role of complement receptor 3. Microb Pathog. 2003;35:125-131.   DOI
22 Suhair H, Amos E. Leukocyte adhesion deficiencies. Ann N Y Acad Sci. 2012;1250:50-55. https://doi.org/10.1111/j.1749-6632.2011.06389.x.   DOI
23 Kim GT, Sull JW, Jee SH. Effects of TLR4 variants on fasting glucose levels in a Korean population. Korean J Clin Lab Sci. 2017;49:345-349. https://doi.org/10.15324/kjcls.2017.49.4.345.   DOI
24 Sobota RS, Stein CM, Kodaman N, Scheinfeldt LB, Maro I, Wieland-Alter W, et al. A Locus at 5q33.3 confers resistance to tuberculosis in highly susceptible individuals. Am J Hum Genet. 2016;98:514-524. https://doi.org/10.1016/j.ajhg.2016.01.015.   DOI
25 Omae Y, Toyo-Oka L, Yanai H, Nedsuwan S, Wattanapokayakit S, Satproedprai N, et al. Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis. J Hum Genet. 2017;62:1015-1022. https://doi.org/10.1038/jhg.2017.82.   DOI
26 Esterhuyse MM, Weiner J 3rd, Caron E, Loxton AG, Iannaccone M, Wagman C, et al. Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers. MBio. 2015;6:e01187-15. https://doi.org/10.1128/mBio.01187-15.