IMT-2000이동시스템에서는 빠른 전송속도의 지원으로 무선인터넷, 전자상거래 등 많은 응용서비스의 제공이 예상된다. 이들 서비스는 인증, 데이터 무결성, 데이터 암호화 등 높은 수준의 보안기능을 요구한다. 본 논문에서는 IMT-2000에서 암호화, 인증 등 망접속 보안 기능 제공에 따른 무선링크의 성능 분석을 수행하였다. 보안 기능의 추가에 따라 모든 구성 시스템간의 링크에서 관련 메시지 전송에 따른 부하가 증가하나 추가되는 용량의 처리가 쉽게 해결 가능한 유선구간에서의 성능분석은 제시하고 메시지 증가에 가장 민감한 구간인 무선링크에 대만 성능에 미치는 영향을 분석하였다.
현재 VoD 시스템은 마이크로소프트(Microsoft Corporation)에서 제공하는 WMS(Windows Media Server)를 사용하여 많이 구축하고 있다. 이 때 시스템의 QoS는 WMS의 성능에 크게 의존하기 때문에 WMS 의 성능을 동적으로 분석할 필요가 있다. 본 연구에서는 WMS 의 성능 분석을 위해 제안된 에이전트 시스템 모델(agent system model)에서 WMS와 인터페이스를 하는 에이전시(agency) 부분을 개발한다. 에이전시는 WMS가 클라이언트들에게 스트림 서비스를 제공하는 과정을 모니터링하고, 성능 분파에 필요한 데이터를 수집하여 저장하고, WMS 가 성능 향상을 위해 필요한 조치를 실행하게 한다.
기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 본 논문은 이러한 다른 도메인에 적용시 발생하는 성능 하락 현상을 극복하기 위해서 기존의 소스 도메인 학습 데이터를 활용하여, 소규모의 타겟 도메인 학습 데이터 구축만으로도 성능 하락을 최소화하기 위해 한국어 의미역 인식 기술에 prior 모델을 제안하며 기존의 도메인 적응 알고리즘과 비교 실험하였다. 추가적으로 학습 데이터에 사용되는 자질 중에서, 형태소 태그와 구문 태그의 자질 값을 기존보다 단순하게 적용하여 성능의 변화를 실험하였다.
오래전부터 바이오 정보 처리에 대한 관심은 매우 높았으며, 컴퓨터의 성능 발달에 따라 기존에 처리할 수 없었던 대용량 바이오 데이터의 처리가 가능해 지면서 바이오 컴퓨팅의 역할이 점차 커지고 있다. 보다 효과적인 바이오 컴퓨팅을 위해서는 빠른 데이터 처리 속도가 필수적이며 이를 위하여 근본적으로 컴퓨터의 데이터 처리 성능을 향상시킬 필요가 있다. 본 논문에서는 최근에 각광받고 있는 SSD와 멀티코어 시스템을 이용하여 컴퓨터의 성능을 올려 대표적인 바이오 데이터의 처리 도구인 BLAST에 얼마나 효과적인지를 실험을 통하여 검증하고 그 가능성을 분석하였다. 또한 SSD에서의 바이오 데이터 최적화를 위하여 필요한 정보를 수집하고 사용 방안을 모색해보았다.
관계형 데이터베이스의 데이터와 처리요청이 증가할수록 해당 데이터의 처리속도는 떨어지게 마련이다. 처리해야할 범위가 넓어도 빠른 속도로 결과를 처리할 수 있다면 데이터베이스 시스템의 효용성의 크게 증대될 것이다. 만약 조건에 맞는 데이터가 100만 건이 나왔다고 한다면 굳이 모든 것을 액세스를 한 다음에 그 결과를 출력할 필요는 없기 때문이다. 그러므로 사람의 눈으로 확인할 일부분만 결과를 먼저 제공하고 나머지는 다음 데이터를 원할 때 처리해서 제공하는 방식은 실제로 처리할 데이터는 아주 소량이 되므로 조건 범위와 무관하게 처리량을 크게 줄일 수 있는 장점이 있다. 본 논문에서는, 관계형 데이터베이스 환경에서 부분 범위처리를 통한 성능향상의 개념과 그 분석을 통한 관계형 데이터베이스 성능 향상 모델을 제시한다. 이는 설계에서부터 애플리케이션 개발에 이르기까지 많은 부분에 성능향상을 미치게 될 것으로 보인다.
일반적으로 효율적인 질의.검색.분석을 수행하기 위해서 이질적이고 분산된 정보 소스들 부터 통합된 정보를 포함한 데이터 저장고를 데이터 웨어하우스라 일컬으며, 이를 웹기술과 접목한 기술을 웹 웨어하우징이라 한다. 본 연구에서는 웹 웨어하우징 기술의 모토가 될 수 있는 기술로서 분산되어 저장된 다양한 소스 데이터에 대해 실체 뷰로 간과되어지는 데이터 웨어하우스에 관한 유지 방법에 관한 연구이다. 본 연구의 성능 평가를 위해서 기존에 알려진 보상알고리즘, 모든 기본 릴레이션에서 키 애트리뷰트들을 포함해야만 하는 스트로브와 이를 완화시켜서 성능향상을 보이는 스윕 알고리즘들을 각각 특성별로 비교하며, 전송된 바이트 수와 갱신된 회수에 따른 성능 평가 및 갱신 유형에 따른 성능 평가를 수행하여 결과를 보인다.
본 논문에서는 다수의 특징, 특히 셋 이상의 특징을 가지는 데이터에 대한 분광 군집 방법인 적응형 분광 군집 방법을 소개하고, 적응형 분광 군집 방법의 성능을 시뮬레이션 데이터와 다중 언어 데이터를 이용하여 분석한다. 적응형 분광 군집 방법에서는 특징 간 서로 다른 정보들을 공유하여 데이터를 군집화함으로써 군집 성능을 높인다. 이때, 서로 다른 특징 간의 정보 공유를 효율적으로 하기 위해, 협업학습을 도입했다. 협업 학습에서는 각 특징이 서로 독립이 되도록 가중치를 학습하고, 학습된 가중치에 따라 정보를 전달한다. 이러한 과정을 통해 일반적인 특징 결합이나, 모든 특징 간 독립을 가정한 기존 협업학습 기반의 분광 군집에 비해 정보 공유의 효율성을 높인다. 실험에서는 시뮬레이션 데이터와 다중 언어문서 데이터를 이용하여 성능을 검증하였으며, 반복과정에서의 성능 변화와 정보 전달 결과 변화하는 모습을 제시함으로써 적응형 분광 군집 방법의 유의미한 성능 향상에 대해 분석하였다.
AI 분석 과정에서 특징 데이터 추출은 분석 성능에 큰 영향을 미칠 뿐만 아니라 가장 많은 시간을 소요하는 과정 중의 하나이다. 계산과학 데이터는 HPC를 활용하여 생산되므로 데이터가 크고 복잡할 뿐 아니라 데이터의 수도 방대한 경우가 많다. 이 때문에 계산과학 데이터로부터 특징 데이터 추출하는 과정은 복잡성이 크고, 소요 시간도 매우 크다. 본 논문은 먼저 계산과학 데이터로부터 특징 데이터 추출하는 과정에 대한 요구사항과 이슈들을 분석한다. 그리고 확장성을 고려한 계산과학 데이터의 인공지능 분석을 위한 특징 데이터 추출 자동화 시스템을 제안한다.
강우에 따른 수위예측은 수자원 관리 및 재해 예방에 있어 중요하다. 기존의 수문분석은 해당지역의 지형 데이터, 매개변수 최적화 등 수위예측 분석에 있어 어려움을 동반한다. 최근 AI(Artificial Intelligence) 기술의 발전에 따라, 수자원 분야에 AI 기술을 활용하는 연구가 수행되고 있다. 본 연구에서는 데이터 간의 관계를 포착할 수 있는 AI 기반의 기법을 이용하여 강우에 따른 수위예측을 실시하였다. 연구대상 유역으로는 과거 수문데이터가 풍부한 설마천 유역으로 선정하였다. AI 기법으로는 머신러닝 중 SVM (Support Vector Machine)과 Gradient boosting 기법을 이용하였으며, 딥러닝으로는 시계열 분석에 사용되는 RNN (Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크을 이용하여 수위 예측 분석을 수행하였다. 성능지표로는 수문분석에 주로 사용되는 상관계수와 NSE (Nash-Sutcliffe Efficiency)를 이용하였다. 분석결과 세 기법 모두 강우에 따른 수위예측을 우수하게 수행하였다. 이 중, LSTM 네트워크는 과거데이터를 이용한 보정기간이 늘어날수록 더욱 높은 성능을 보여주었다. 우리나라의 집중호우와 같은 긴급 재난이 우려되는 상황 시 수위예측은 빠른 판단을 요구한다. 비교적 간편한 데이터를 이용하여 수위예측이 가능한 AI 기반 기법을 적용할 시 위의 요구사항을 충족할 것이라 사료된다.
본 연구는 국방과학기술 분야의 특허 및 논문 실적을 이용하여 통계기반 기계학습 모델 4 종을 학습하고, 실제 분석 대상기관의 데이터 입력결과를 분석하여 실용성에 대한 한계점 분석을 목적으로 한다. 기존 연구에서는 특허분류코드를 기준으로 분류하여 특수 목적으로 활용하거나 세부 연구 범위 내 연구 주제탐색 및 특징연구 등 미시적인 관점에서의 상세연구 활용 목적인 반면, 본 연구는 거시적인 관점에서 연구의 전체적인 흐름과 경향성 파악을 목적으로 한다. 이에 ICT 기술 138 종의 특허 및 논문 30,965 건과 국방과학기술 192 종의 특허 및 논문 23,406 건을 학습데이터로 각 모델을 학습하였다. 비교한 통계기반 학습모델은 Support Vector Machines, Decision Tree, Naive Bayes, XGBoost 모델이다. 학습데이터에 대한 학습검증 단계에서는 최대 99.4%의 성능을 보였다. 다만, 실제 분석대상기관의 특허 및 논문 12,824 건으로 입력분석한 결과, 모델별 편향성 문제, 데이터 전처리 이슈, 다중클래스 및 다중레이블 문제를 확인, 도출한 문제에 대한 해결방안을 제시하고 추가 연구의 방향성을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.