The Journal of Information Technology and Database
/
v.5
no.1
/
pp.1-12
/
1998
분산 환경에서 데이터의 할당(allocation)는 중요한 설계 이슈이다. 데이터의 할당은 분산 데이터에 대한 비용(cost) 감소, 성능(performance) 및 가용성(availability) 향상 등의 이점을 극대화할 수 있도록 최적화되어야 한다. 기존 연구들의 대부분은 트랜잭션의 수행 비용을 최소화하는 방향으로만 최적화된 데이터 할당 결과를 제시하고 있다. 즉, 비용, 성능 및 가용성을 모두 함께 고려하는 연구는 아직까지 제시된 결과가 없으며 이는 복잡한 모델에 대한 적절한 최적화 기법이 없기 때문이다. 본 연구에서는 분산 데이터의 이점들인 비용, 성능 및 가용성 등의 다중측면을 동시에 고려함으로써 데이터 할당에 대한 파레토 최적해를 제공하는 DAMMA (Data Allocation Methodology considering Multiple Aspects) 방법론을 제안하였다. DAMMA 방법론은 데이터 분할 과정을 통하여 생성된 최적의 단편들을 분산 시스템의 운용 비용, 수행 성능, 가용성 등의 요소를 고려하여 각 물리적 사이트에 중복 할당하는 파레토 최적해들을 생성해낼 수 있는 설계 방법론이다.
KIPS Transactions on Computer and Communication Systems
/
v.2
no.12
/
pp.569-576
/
2013
Cloud computing has been receiving increasing attention recently. Despite this attention, security is the main problem that still needs to be addressed for cloud computing. In general, a cloud computing environment protects data by using distributed servers for data storage. When the amount of data is too high, however, different pieces of a secret key (if used) may be divided among hundreds of distributed servers. Thus, the management of a distributed server may be very difficult simply in terms of its authentication, encryption, and decryption processes, which incur vast overheads. In this paper, we proposed a efficiently data storage and recovery scheme using XOR and RAID in Hadoop environment.
Since the emergence of the fourth industrial revolution, data analysis is being conducted in various fields. Distributed data processing has already become essential for the fast processing of large amounts of data. However, in the defense sector, simulation used cannot fully utilize the unstructured data which are prevailing at real environments. In this study, we propose a distributed data processing platform that can be applied to battalion level simulation models to provide visualized data for command decisions during training. 500,000 data points of strategic game were analyzed. Considering the winning factors in the data, variance processing was conducted to analyze the data for the top 10% teams. With the increase in the number of nodes, the model becomes scalable.
This paper considers moving variance ratio (MVR) for valiance detection problem with time series data in progress. For testing purpose, parametric method based on F distribution and nonparametric method based on empirical distribution are compared via simulation study.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.520-522
/
2004
분산 감시 제어 시스템은 산업분야에서 중요한 부분이다. 그러나 일반적인 분산 감시 제어 시스템의 응용 소프트웨어간이나 감시 장비간의 또는 응용 소프트웨어와 감시 장비간의 통신이 필요하다. 이러한 문제점은 통신의 과부하로 이어질 수 있다. 본 논문에서는 이러한 문제점을 해결하고 대규모 분산 감시 제어 시스템에서 사용할 수 있는 개발 환경을 제안한다. 이 시스템은 분산 시스템에서 정보를 동기화 하여 분산 환경하의 모든 응용 소프트웨어나 감시 장비가 공유 할 수 있도록 하는 정보 동기화 기술로 이루어져 있다 이 기술은 공유메모리를 사용하여 프로그램 코드와 데이터 구조를 분리하여 데이터 구조 및 데이터 값을 공유할 수 있게 하는 SDSL(Shared Data Structure Library)기법을 사용한다. 그리고 적시성을 보장해 주는 미들웨어인 TMO(Time-triggered Message-triggered Object)를 이용하여 실시간 성을 보장해 주는 한편 통신을 가능하게 해줌으로써 분산 시스템에서도 적용할 수 있다. 본 논문에서 제안하는 개발 환경은 데이터 구조를 동적으로 변화시켜주면서 대규모 분산 감시 제어 시스템에서 응용 프로그램을 보다 편하게 구현하고자 하는 산업 분야에 적용할 수 있다.
Ho Kim;Sung-Ha Baek;Yan Li;Dong-Wook Lee;Weon-Il Chung;Hae-Young Bae
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.401-404
/
2008
u-GIS 환경에서 발생하는 시공간 데이터는 지속적으로 발생하는 데이터 스트림의 특성을 갖으며, 그런 특성으로 인하여 데이터 발생량이 급격히 증가함에 따라 데이터 손실 및 시스템 성능 저하현상이 발생한다. 이를 해결하기 위해 부하 분산 연구들이 활발히 진행되어 오고 있다. 그러나 기존의 연구 방식인 랜덤 부하 분산 방식과 의미적 부하 분산 방식은 현 u-GIS 환경에서 부하 분산 속도 및 질의 결과의 정확도 측면에 만족스럽지 못한 결과를 준다. 그래서 본 논문에서는 우선순위를 이용한 차등적 부하 분산(DLSM : Different Load Shedding using MAP table)기법을 제안한다. DLSM 기법은 등록된 공간질의의 공간연산을 통해 영역의 우선순위를 미리 부여하고, 데이터가 발생하여 질의 처리기로 유입되기 전 우선순위를 파악한다. 데이터는 우선순위 단계에 따라 유입량을 확인 후 삭제 여부가 결정된다. 결과적으로 부하 분산 속도와 질의 결과의 정확도를 향상시켰다.
Functional data is collected in various fields. It is often necessary to test whether there are differences among groups of functional data. In this case, it is not appropriate to explain using the point-wise ANOVA method, and we should present not the point-wise result but the integrated result. Various studies on functional data analysis of variance have been proposed, and recently implemented those methods in the package fdANOVA of R. In this paper, I first explain ANOVA and multivariate ANOVA, then I will introduce various methods of analysis of variance for univariate and multivariate functional data recently proposed. I also describe how to use the R package fdANOVA. This package is used to test equality of weekly temperatures in Seoul and Busan through univariate functional data ANOVA, and to test equality of multivariate functional data corresponding to handwritten images using multivariate function data ANOVA.
Proceedings of the Korean Information Science Society Conference
/
2000.10a
/
pp.104-106
/
2000
이 논문은 클라이언트에서 다수의 서버에 대한 공간 데이터의 변경 문제를 대상으로 한다. 분산 환경에서의 데이터 변경은 다음과 같은 요구조건을 가진다. 첫째, 분산 환경에서는 서로 다른 구조의 클라이언트 및 서버에 대해 확장성을 고려해야 한다. 둘째, 공간 데이터 간에는 공간 관련성이 존재하기 때문에, 서로 다른 서버에 분산 저장된 공간 데이터간의 공간 관련성을 유지해야 한다. 셋째, 한 클라이언트에서의 변경은 여러 서버 및 다른 클라이언트와의 협동 작업을 통해 수행되어야 한다. 이 논문에서는 클라이언트에서의 공간 데이터 변경을 처리하기 위해 서비스 제공자를 설계, 구현한다. 서비스 제공자는 미들웨어 컴포넌트로써 동일한 인터페이스를 제공하기 때문에, 클라이언트 및 서버의 확장이 용이한 장점을 갖는다. 이 논문에서 제공하는 서비스 제공자는 2PC 기반의 변경 프로토콜에 따라 분산된 서버간에 존재하는 공간 관련성을 유지하면서 공간 데이터의 변경을 수행한다. 즉, 서비스 제공자는 클라이언트에서 변경을 요청한 객체에 대해 공간 관련성 유무를 검사하고, 공간 관련성을 가진 객체를 포함한 서버에 변경 내용을 전파한 후, 협동 작업을 통해 변경을 확정하거나 취소하게 된다.
Proceedings of the Korean Society of Computer Information Conference
/
2014.07a
/
pp.329-332
/
2014
클라우드 컴퓨팅이 활성화 됨에 따라 기존의 파일 시스템과는 다른 대용량 파일 처리에 효율적인 분산파일시스템의 요구가 대두 되었다. 그 중에 하둡 분산 파일 시스템(Hadoop Distribute File System, HDFS)은 기존의 분산파일 시스템과는 달리 가용성과 내고장성을 보장하고, 데이터 접근 패턴을 스트리밍 방식으로 지원하여 대용량 파일을 효율적으로 저장할 수 있다. 이러한 장점 때문에, 클라우드 컴퓨팅의 파일시스템으로 대부분 채택하고 있다. 하지만 실제 HDFS 데이터 집합에서 대용량 파일 보다 소용량 파일이 차지하는 비율이 높으며, 이러한 다수의 소 용량 파일은 데이터 처리에 있어 높은 처리비용을 초래 할 뿐 만 아니라 메모리 성능에 악영향을 끼친다. 하지만 소 용량 파일을 프리패칭 함으로서 이러한 문제점을 해결 할 수 있다. HDFS의 데이터 프리페칭은 기존의 데이터 프리페칭의 기법으로는 적용하기 어려워 HDFS를 위한 데이터 프리패칭 기법을 제안한다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.449-449
/
2021
하천 내 오염물질 유입원은 하수처리장과 같이 농도를 예측 가능한 점오염원이 일반적이지만, 수질오염사고와 같이 다량의 유해물질이 일시에 하천에 유입되는 경우도 발생하곤 한다. 특히 오염물질 유입지점과 취수장이 인접한 경우, 오염물질 혼합해석에 대한 이해가 오염사고 대응 및 수질 관리 측면에서 매우 중요하다. 자연하천에서는 사행에 따른 유속 구조의 불균일성 등으로 인하여 오염물질의 이송 및 분산 과정은 매우 복잡하게 나타난다. 이러한 하천의 지형적, 수리학적 특성이 오염물질의 혼합 거동에 미치는 영향을 정확하게 모의하기 위해서는 3차원 수치모형을 적용해야 한다. 그러나 대부분의 하천은 하폭 대 수심비가 매우 크기 때문에 2차원 이송-분산 방정식을 지배방정식으로 채택하는 2차원 수치 모형이 널리 사용되어왔다. 2차원 이송-분산 방정식의 해석결과는 입력된 종, 횡 분산계수의 값에 따라 변화하기 때문에 정확한 혼합해석을 위해 분산계수의 결정이 매우 중요하다. 과거 연구에서는 횡 분산계수의 결정을 위해 기본 수리량을 이용한 경험식을 활용하여 계산한 바 있다. 종 분산계수의 경우에는 경험식의 산정에 필요한 충분한 실험 자료가 축적되어 있지 않아 이상적 흐름 상태를 가정하여 유도된 Elder의 이론식(Elder, 1959)을 사용해왔다. 하지만 많은 연구에서 이러한 Elder의 이론식이 종 분산계수를 과소산정 할 우려가 있다고 제시했다. 따라서 하천의 전단류 분산특성을 나타낼 수 있는 데이터 확보를 통해 종 분산계수의 경험식 산정 및 횡 분산계수의 정확도 향상이 필요한 상황이다. 본 연구에서는 기존 선행 연구에서 수행된 2차원 추적자실험 데이터의 확장을 위해 오버샘플링 기법을 적용하였으며, 이를 통한 머신러닝을 통한 분산계수 산정 가능성을 분석하고자 한다. 부족한 추적자 실험 데이터를 확장하기 위해 오버샘플링 기법 중 SMOTE 기법을 활용했다. 오버샘플링 기법을 이용하여 생산된 데이터의 신뢰성을 검증하였으며, 추후 머신러닝을 이용한 2차원 종, 횡 분산계수 산정에 대한 활용 가능성을 분석했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.