본 논문은 복합표본조사 분석에서 회귀모형 접근법으로 사용되는 모형 기반 접근법, 설계 기반 접근법과 일반화 추정 방정식 접근법을 설명하고, 이들을 실증적으로 비교한 것이다. 또한 설계 기반 접근법과 일반화 추정 방정식 접근법에 대해서 설계효과와 가중치 효과 분석을 통해서 표본 설계가 모수 추정에 미치는 영향을 살펴보았다.
빅데이터분석은 조직의 문제해결을 위한 융합적 수단이다. 효과적인 문제해결을 위해서는 문제의 형태, 데이터의 유형 및 존재여부, 데이터 분석역량, 분석을 위한 기반정보기술의 수준 등 다양한 요인을 융합적으로 고려하여 문제해결의 접근법이 결정되어야 한다. 본 연구에서는 기획 접근법으로 논리적인 하향식 접근법, 데이터기반의 상향식 접근법, 그리고 문제해결 환경의 불확실성을 극복하기 위한 프로토타이핑 접근법 등 세 가지 유형을 제안한다. 특히, 이 유형 중에서 창의적 문제해결과 상향식 접근법이 어떤 연관성을 갖는지 살펴본다. 또한 데이터 거버넌스와 데이터 분석역량을 융합적으로 고려하여 조직의 빅데이터분석의 소싱과 관련한 주요 전략적 이슈를 도출한다.
복합표본조사 데이터 분석에서 회귀모형 접근법은 크게 표본설계 기반 접근법(design-based approach)과 일반화 추정 방정식 접근법(generalized estimating equations approach)으로 구분된다. 본 논문은 이들 접근법과 모형기반 접근법을 비교하여 설명하고, 각 접근법에서 표본설계가 모수 추정에 미치는 영향을 설계 효과와 가중치 효과 분석을 통해서 살펴보았다.
본 논문은 복합표본조사 분석에서 회귀모형 접근법으로 사용되는 모형 기반 접근법, 설계 기반접근법과 일반화 추정 방정식 접근법을 설명하고, 이들을 실증적으로 비교한 것이다. 또한 설계 기반 접근법과 일반화 추정 방정식 접근법에 대해서 설계효과와 가중치 효과 분석을 통해서 표본 설계가 모수 추정에 미치는 영향을 살펴보았다.
핸드헬드 디바이스의 경우, 반복 작업에 대한 CPU 연산 최소화가 성능에 중요한 요소이다. 본 논문에서는 주식 데이터, 네트워크 트래픽, 센서 데이터 등의 시계열 스트림 데이터 상에서 유사 시퀀스를 효율적으로 찾아내는 핸드헬드 디바이스용 알고리즘을 제시한다. 이를 위하여, 우선 시계열 스트림 데이터 상에서 유사 시퀀스를 찾아내는 문제를 스트림 시퀀스 매칭(stream sequence matching)으로 정형적으로 정의한다. 다음으로, 기존의 서브시퀀스 매칭에서 사용했던 윈도우 구성법을 적용하여, 스트림 시퀀스 매칭을 효율적으로 처리하는 윈도우 기반 접근법을 제안한다. 그리고 이러한 윈도우 기반 접근법을 가능하게 하는 윈도우 MBR(window MBR) 개념을 제시하고, 이 개념을 사용하면 스트림 시퀀스 매칭을 정확하게 수행할 수 있음을 증명한다. 또한, 윈도우 기반 접근법에 기반한 두 가지 스트림 시퀀스 매칭 알고리즘을 제안한다. 마지막으로, 분석과 실험을 통해 제안한 알고리즘이 단순 접근법에 비해 CPU 연산을 크게 줄이고 성능을 향상시킴을 보인다. 이 같은 결과를 볼 때, 제안한 방법은 CPU 연산 능력이 부족한 핸드헬드 디바이스의 내장형 알고리즘으로 매우 적합하다고 사료된다.
신뢰성 분석은 불확실성으로 인한 제품의 성능 변동을 안전확률이나 파괴확률로 정량화 하여 설계에 이용하기 위해 연구되어 왔다. 불확실성은, 데이터의 양에 따라-물질의 본질적인 특성으로서의 많은 데이터가 주어진 경우의 물리적 불확실성과 부족한 데이터에서의 인식론적 불확실성으로 구분되고, 불확실성을 갖는 대상에 따라-입력변수 및 근사모델 불확실성으로 구분된다. 물리적 불확실성에 대한 연구는 많이 진행되어 왔지만, 실제 산업현장에는 부족한 데이터로 인한 인식론적 불확실성이 지배적이며 이에 대한 연구는 최근에서야 진행되고 있다. 불확실성을 고려하는 신뢰성 기반 설계에는 효율성을 위해 실제모델을 대체하는 근사모델이 이용되는데, 근사모델법 자체에 대한 연구는 많이 진행되어 왔으나, 근사모델 이기 때문에 존재하는 불확실성을 고려한 연구는 최근에서야 연구되기 시작하였다. 본 연구에서는 베이지안 접근법에 기반하여 입력변수 및 근사모델 불확실성을 통합 고려하는 새로운 신뢰성 분석 기법을 제시하고 수치예제를 통해 타당성을 증명한 후, 이를 공학문제에 적용한다.
최근 인터넷의 발달과 사용량의 증가로 데이터의 양이 급증하고 있다. 사용자들은 빠른 시간 내에 원하는 검색 결과를 얻기를 원한다. 또한 사용자 마다 모두 다른 선호도를 가지기 때문에 사용자 질의에 기반 하여 검색되어야 한다. 따라서 본 논문에서는 사용자 질의에 따라 빠른 시간 내에 효율적으로 List 기반의 접근법을 사용하여 top k 질의를 하는 기존의 연구를 소개 및 분석하고 문제점을 파악한다.
본 연구에서는 인터넷 상에서 발생되는 부정행위를 탐지할수 있는 신뢰 모델을 생성하고 개인의 프라이버시를 보장할수 있는 모델을 제시하였다. 인터넷 상에 게시판에 올려진 부정해위를 탐지하기 위해 앙상블 접근 방식 기반의 분류 모델을 제시하고 자동화된 도구를 제안하였다. 본 연구는 데이터에 대한 탐색적 데이터 분석을 수행하고 얻은 통찰력을 사용해 자연어처리 가반 텍스트를 기반으로 앙상블 기반의 위조 탐지 알고리즘을 제안하였다. 제안 알고리즘의 정확도는 99%로 자연어 처리에 높은 탐지율을 보였다.
전파형 역산은 석유가스 탐사를 위한 탄성파 자료처리 분야에서 지층의 속도 모델을 추정하는데 사용되는 역산 기법이다. 최근 탄성파 자료처리에 딥러닝 기술의 활용이 급격하게 증가하고 있는데, 전파형 역산 기술도 마찬가지로 다양한 연구가 이루어지고 있다. 초기에는 머신러닝 기술을 활용한 자료처리 기법이 전파형 역산을 위한 입력자료의 전처리 목적으로 활용되는 수준이었으나, 딥러닝 기술을 통해 전파형 역산을 직접적으로 구현하는 연구가 등장하기 시작하였다. 딥러닝 기술을 활용한 전파형 역산은 순수 데이터 기반 접근법, 물리 기반 신경망 활용법, 인코더-디코더 구조 활용법, 신경망 재매개변수화를 이용한 구현법, 물리정보 기반 신경망 기법 등으로 구분할 수 있다. 이 논문에서는 딥러닝 기반 전파형 역산 기법을 발전 과정 순서로 체계화하여 각각의 접근법에 대한 이론과 특징을 설명하였다. 전파형 역산 기술에 딥러닝 기법을 도입한 초기에는 데이터 과학의 기본 원리에 충실하게 대량의 학습자료를 준비하고 순수 데이터 기반 예측 모델을 적용하여 속도 모델을 역산하는 연구로 시작하였다. 최근 연구 동향은 탄성파 자료의 잔차나 파동방정식 자체의 물리정보를 심층 신경망에 활용하여 순수 데이터 기반 접근법의 단점을 보완해 나가는 방향으로 진행되고 있다. 이러한 발전으로 대량의 학습자료가 필요하지 않고, 전파형 역산의 태생적 한계점인 주기 놓침 현상을 완화하며 계산 시간을 획기적으로 줄일 수 있는 딥러닝 기반 전파형 역산 기술이 등장하고 있다. 딥러닝 기술의 도입으로 전파형 역산 기술은 탄성파 자료처리 분야에서 가치가 더 높아질 것으로 생각된다.
구조요소의 설계에서 유한요소해석은 매우 효과적인 방법이다. 이 방법은 시험 수행에 드는 시간과 비용을 줄여준다. 그러나 공정 과정과 환경에 의하여 생기는 입력 물성치들의 변화 때문에 우리는 유한요소해석의 결과를 전적으로 믿어서는 안 된다. 따라서 유한요소해석의 신뢰성을 증명하는 것은 매우 중요하다. 본 연구에서는 현장에 축적된 피로 수명 시험 데이터를 바탕으로 유한요소해석을 이용하여 피로수명 파라미터를 역 추정 하는 연구를 수행하였다. 베이지안 접근법을 이용하여 불확실성 피로 수명 파라미터의 사후분포를 구하였고, 마코프체인몬테카를로(Markov Chain Monte Carlo) 기법을 이용하여 역 추정된 파라미터의 샘플 데이터를 생성하였다. 얻어진 샘플 데이터를 기반으로 새로운 형상의 스프링에 대한 피로 수명을 예측한다. 신뢰성 기반 형상 최적화(RBDO)는 서스펜션 코일 스프링의 요구수명을 만족시키기 위하여 수행된다. 또한 크리깅 근사 모델은 유한요소해석의 연산 량 감소를 위해 이용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.