Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2024년도 춘계학술발표대회
/
pp.130-132
/
2024
본 논문에서는 과학 빅데이터를 위한 고속 데이터 전송 방식을 제안한다. 최근의 과학연구는 이전보다 훨씬 더 많은 양의 데이터를 요구하지만, 잘 알려진 네트워킹 문제인 라스트마일 문제로 인해 여전히 데이터를 수신하는 데 시간이 오래 걸린다. 과학 빅데이터 전송시 라스트마일 문제로 인한 패킷 손실에 대해 더 나은 방법을 제안한다. 제안하는 방법은 원격 전송에 최적화된 중간 서버를 사용하고 종단간 네트워크 경로에서 라스트마일을 분리한다. 전송 측정을 통해 향상된 성능을 확인한다.
Big data analysis is a means of organizational problem solving. For an effective problem solving, approaches to problem solving should take into account the factors such as characteristics of problem, types and availability of data, data analytic capability, and technical capability. In this article we propose three approaches: logical top-down, data driven bottom-up, and prototyping for overcoming undefined problem circumstances. In particular we look into the relationship of creative problem solving with the bottom-up approach. Based on the organizational data governance and data analytic capability, we also derive strategic issues concerning the sourcing of big data analysis.
Large scale survey database may contain some erroneous data or missing data. Incomplete or erroneous data may be produced in the process of data collection or data capture. Since erroneous data can cause some bias and inconsistency, data editing, which is the procedure for detecting and adjusting individual errors in data records, is a very important work in statistical survey. In this paper, we introduce an editing process for the housing price survey to enhance discussions on that topic. We explain how to decide some appropriate edit rules and show some related data. Furthermore, we describe input editing procedures which is appropriate for on-line survey and how to find and eliminate erroneous data through output editing.
We have noted a possibility of big data as a solution of social problem and pending issue. At the same time big data has a problem of privacy. Big data and privacy were in conflict. In this paper we pointed out that issue and propose a planning of big data based on privacy using case study of advanced country.
Proceedings of the Korea Contents Association Conference
/
한국콘텐츠학회 2019년도 춘계종합학술대회
/
pp.425-426
/
2019
전통적인 마이닝 기법은 다양한 디지털 매체와 센서 등에서 생산되는 빅데이터를 처리하기 어려울 뿐 아니라 신규 데이터 누적시 전체 데이터를 재분석 해야하는 비효율성과 대용량의 문서를 학습함에 있어 메모리부족 문제, 학습 소요시간 문제 등이 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 자질축소 기법에 의존하지 않고 대량의 문서를 자유롭게 학습하고 부분적인 자질 추가 변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법을 설계 및 구현하였다. 점진적 학습 모듈은 일반적인 학습 방법이 데이터의 추가 및 변동시마다 모든 데이터를 재학습하는 데 반해, 기존의 학습 결과에 증분된 데이터만 재처리 없이 추가적으로 학습한다. 재학습을 위해 사용자는 작업 수행 중 자원 관리를 통해 기존에 처리된 데이터를 자유롭게 가져와서 새로운 데이터와 병합이 가능하다. 이러한 점직적 학습 효율성은 빅데이터 기반 데이터 처리에 주요한 특성인 데이터 생산 속도를 극복하기 위한 좋은 대안이 될 수 있음을 확인하였다.
Journal of the Institute of Electronics Engineers of Korea SC
/
제49권3호
/
pp.1-11
/
2012
Data association plays an important role in intelligent systems. This paper presents the Bayesian formulation of data association and its applications to intelligent systems. We first describe the Bayesian formulation of data association developed for solving multi-target tracking problems in a cluttered environment. Then we review applications of data association in intelligent systems, including surveillance using wireless sensor networks, identity management for air traffic control, camera network localization, and multi-sensor fusion.
Proceedings of the Korean Statistical Society Conference
/
한국통계학회 2004년도 학술발표논문집
/
pp.277-281
/
2004
최근 마케팅 현업에서 마이크로 마케팅(Micro Marketing)이 마케팅 기법의 화두로 등장하면서 데이터 퓨전(Data Fusion) 또는 데이터 인리치먼트(Data Enrichment)가 각광받는 영역으로 등장하고 있다. 본 연구에서는 데이터 퓨전의 개념과 그를 둘러싸고 있는 통계적 문제와 그 대안에 대하여 논의한다.
Proceedings of the Korean Information Science Society Conference
/
한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
/
pp.187-189
/
2004
XML을 기반으로 한 시스템간의 통합하는 과정에서 발생하는 데이터 정의 이질성 문제, 데이터 표현의 이질성 문제, 유사표준의 중복 개발 등이 야기되므로, 이에 대한 대비책이 필요하다. 따라서 분산된 이 기종 시스템들마다 각기 구조화된 데이터베이스틀 통합하는 과정에 발생하는 시스템간의 불일치 문제를 해결할 수 있는 방법이 메타데이터를 이용하는 것이다. 본 논문에서는 이질적이면서도 분산되어 있는 정보 저장소로부터 메타데이터틀 수집하고. 이를 통합된 메타데이터 베이스로 구축하여, 분산된 데이터베이스에 대한 검색정보 및 데이터 트랜잭션을 할 수 있도록 제안한다. 정보 통합 방법으로는 메타데이터를 기반으로 한 가상 스키마를 이용한다. 스키마 이질성과 데이터 이질성 해결하기 위한 방법으로 메타데이터 가상 스키마를 설계하였다. 메타데이터 가상 스키마 기반으로 한 정보 통합은 XML 뷰어 어인 XDR을 기반으로 한다. 이는 XMVS 템플릿으로 분해하여, 통합 처리 할 수 있는 XML기반의 가상 스키마를 이용한 정보 통합 검색시스템을 설계 제안한다.
Proceedings of the Korean Society of Computer Information Conference
/
한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
/
pp.167-170
/
2017
자동차 보급 증가로 인한 주차 공간 부족 문제는 불법 주정차 차량 발생의 원인이 되어, 교통 체증을 야기하는 심각한 사회문제가 되었다. 따라서 각 지방자치단체에서는 불법 주정차 문제 해결을 위한 법안을 마련하기 위해 노력하고 있으며, 불법 주정차문제를 해결하기 위한 연구가 진행되고 있다. 한편, 정보통신의 발달에 의해 데이터의 양이 매우 빠른 속도로 증가하고 있으며, 아울러 공공 데이터의 양도 매우 빠른 속도로 증가하고 있다. 따라서 공공 빅데이터를 효율적으로 처리하기 위한 연구가 필요하다. 그러나 현재 공공 빅데이터 관리 및 분석을 수행하기 위한 효율적인 시스템을 구축하는 데는 아직 미흡한 실정이다. 따라서 본 논문에서는 불법 주정차 데이터와 같은 공공데이터를 효율적으로 분석하고 효과적인 주 정차 단속을 위한 하둡 기반 불법 주 정차 데이터 관리 및 분석 시스템을 제안한다.
일반적으로 support vector machine (SVM)은 입력 데이터를 두개의 다른 클래스로 구별하는 결정면을 학습을 통하여 구한다. 특히 비분류 문제, 비선형 분류 문제들과 같은 두-클래스 문제를 해결하기 위해 데이터를 고차원의 특정 공간에서 다룬다. 많은 응용분야에서, 각 입력 데이터들은 이 두개의 클래스 중의 하나로 완전히 정의되지 않을 수도 있다. 이러한 문제를 해결하기 위해 우리는 본 논문에서 FSVM(fuzzy support vector machine)을 적용한다. 각 입력 데이터에 퍼지 멤버십(fuzzy membership)을 적용하여 결정면의 학습과정에 입력 데이터들이 다른 기여 (contribution)를 할 수 있게 한다. 본 논문에서는 기준 데이터 집합에 대해 제안된 방법을 실험하고, FSVM이 기존의 SVM보다 더 나음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.