인터넷상의 소통을 위해 댓글 시스템은 필수적이다. 하지만 온라인상의 익명성을 악용하여 타인에 대한 부적절한 표현 등의 악성 댓글 또한 존재한다. 악성 댓글로부터 사용자를 보호하기 위해 악성/정상 댓글의 분류가 필요하고 이는 텍스트 분류로 구현할 수 있다. 자연어 처리에서 텍스트 분류는 중요한 주제 중 하나이고 최근 BERT 등 pretrained model을 활용한 연구와 GCN, GAT 등의 그래프 구조를 활용한 연구가 활발히 진행되고 있다. 본 연구에서는 실제 공개된 댓글에 대해 BERT, GCN, GAT 을 활용하여 댓글 분류 시스템을 구현하고 성능을 비교하였다. 본 연구에서는 그래프 기반 모델을 사용한 시스템이 BERT 대비 높은 성능을 보여주었다.
뉴스, SNS 등의 인터넷 댓글은 익명으로 의견을 자유롭게 개진할 수 있는 반면 댓글의 익명성을 악용하여 비방이나 험담을 하는 악성 댓글이 여러 분야에서 사회적 문제가 되고 있다. 해당 문제를 해결하기 위해 AI를 활용한 댓글 분류 알고리즘을 개발하려는 많은 노력들이 이루어지고 있지만, 댓글 분류 모델에 사용되는 AI는 오버피팅의 문제로 인해 댓글 분류에 대한 정확도가 떨어지는 문제점을 가지고 있다. 이에 본 연구에서는 크라우드소싱을 활용하여 오버피팅으로 인한 악성 댓글 분류 및 판단 정확도 저하 문제를 개선한 크라우드소싱 기반 딥러닝 분류 알고리즘(Deep Learning Classification Algorithm Based on Crowdsourcing: DCAC)과 해당 알고리즘을 사용한 시스템을 제안한다. 또한, 실험을 통해 오버피팅으로 낮아진 판단 정확도를 증가시키는 데 제안된 방법이 도움이 되는 것을 확인하였다.
최근 들어 인터넷 게시판이나 개인 블로그 등은 온라인상에서 사람들의 정보 공유나 의견 교환의 중요한 매체가 되고 있다. 많은 수의 블로그들은 현재 사회적으로 이슈가 되는 여러 문제들을 반영하고 있다. 또한 최근 댓글을 통해 적극적으로 자신의 의사 표현하거나 다른 사람들의 의견을 살피는 인터넷 사용자의 증가로 인터넷 뉴스나 블로그 기사에 많은 수의 댓글이 달리고 있다. 그러나 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 자신이 원하는 내용의 댓글을 검색하거나 전체 댓글에 대한 전반적인 파악은 힘든 일이다. 따라서 본 논문에서는 기사에 달린 많은 수의 댓글들을 분류하고, 이를 시각화 하는 시스템인 TRIB(Telescope for Responding comments for Internet Blog)을 제안한다. TRIB은 미리 정의된 사용자 정의 사전을 이용하여 댓글을 내용에 따라 분류하여 시각화 하므로 사용자들은 자신의 관심과 흥미에 따라 개인화 된 뷰를 볼 수 있다. 1,000개 이상의 댓글을 가진 뉴스 기사들을 대상으로 한 실험을 통해 TRIB 시스템의 댓글 분류와 시각화 성능을 보인다.
최근 들어 블로그나 인터넷 게시판 등은 사람들의 정보 공유나 의견 교환의 중요한 매체가 되고 있으며, 많은 수의 블로그들이 사회적 문제들을 반영하고 있다. 온라인 커뮤니티에서 많은 사용자들은 댓글을 통해 인터넷 뉴스나 블로그 게시물에 대한 자신의 의견을 적극적으로 표현하고 있다. 블로그 사용이 활발해짐에 따라 수만개 이상의 댓글들이 등록되는 블로그들도 쉽게 찾을 수 있다. 대부분의 블로그나 인터넷 포털사이트의 경우 게시물이나 댓글들을 순차적인 목록 형태로 제공하므로 자신이 원하는 내용의 댓글을 검색하거나 전체 댓글에 대한 전반적인 파악이 힘들다. 본 논문에서는 게시물에 달린 많은 수의 댓글들을 분류하고, 이를 시각화 하는 시스템인 TRIB (Telescope for Responding comments for Internet Blog)를 제안한다. TRIB는 미리 정의된 사용자 정의 사전을 이용하여 댓글을 내용에 따라 분류하여 시각화한다. 또한, 사용자들의 관심과 흥미를 고려한 개인화 된 뷰를 제공한다. TRIB의 유용성을 보이기 위해서 1,000개 이상의 댓글을 가진 인터넷 게시물들을 대상으로 한 실험을 통해 TRIB 시스템의 댓글 분류와 시각화 성능을 보인다.
Journal of Advanced Marine Engineering and Technology
/
제34권6호
/
pp.871-879
/
2010
본 논문은 뉴스 기사의 댓글에 대한 사용자의 감정을 분류하는 시스템을 제안한다. 제안된 시스템은 댓글의 문서 분류 시스템으로 기계학습에 기반을 두고 있다. 댓글은 일반적인 문서와 달리 본문을 가지고 있으며 본문의 내용이 독자의 감정에 영향을 줄 수 있다. 본 논문에서는 이와 같은 댓글의 특성과 여러 가지 자원을 이용하여 감정 분류를 위한 자질을 제안하고 이들의 가중치 설정 방법을 제안한다. 실험을 통해 이러한 가중치 설정 방법이 한글 뉴스의 댓글에 대한 감정을 분류하는데 효과적임을 알 수 있었다. 또한 댓글과 같이 많은 오류를 포함하는 문서에 대해서 문자 단위의 2음절과 3음절 자질도 충분히 이용 가치가 있음을 확인할 수 있었다. 향후에 뉴스 기사의 댓글뿐 아니라 상품 댓글 등 일반적인 감정 분석에 적용할 계획이다.
본 논문에서는 토픽 시그너처(Topic Signature)와 n-gram을 이용한 댓글 분류 시스템을 개발한다. 토픽 시그너처는 문서요약이나 문서분류에서 자질 선택을 위한 방법으로 많이 사용되어지며, n-gram은 모든 언어에 적용 가능한 장점이 있다. 악성댓글은 대체로 문장 길이가 짧고 유행어나 변형어의 출현 빈도가 높으며 비정형화된 특징이 있다. 따라서 우리는 댓글을 n-gram으로 나누어 자질로 선택한다. 분류를 위해 베이지안(Bayesian)모델을 사용하였다. 본 논문에서는 한글과 영어 댓글에 대한 판별 실험을 통하여 구현한 시스템이 복잡한 전처리 과정이 필요한 기존에 제안된 방법들보다 더 나은 성능을 보이며, 언어에 관계없이 적용 가능하다는 것을 실험 결과를 통해 확인할 수 있었다.
본 논문에서는 기계 학습(Machine Learning)을 이용하여 댓글의 악성 여부를 분류하는 시스템에 대해 설명한다. 댓글은 문장의 길이가 짧고 맞춤법이 잘 되어있지 않는 특성을 가지고 있다. 따라서 댓글 분석을 위해 형태소 분석 결과와 문자단위 Bi-gram, Tri-gram을 자질로 이용한다. 전처리 된 댓글에서 각 자질 추출 방법에 따라 자질을 추출한다. 추출된 자질을 이용하여 기계학습 알고리즘의 모델을 학습하고 댓글의 악성 여부 분류에 활용한다. 본 논문에서는 댓글의 악성 여부 판별을 위한 자질 추출방법을 제안하고 실험을 통해 이에 대한 효용성을 검증하였다.
인터넷에서 댓글 시스템은 자신의 의사표현을 위한 시스템으로 널리 사용되고 있다. 하지만 이를 악용하여 상대방에 대한 혐오를 드러내기도 한다. 악성댓글에 대한 적절한 대처를 위해 빠르고 정확한 탐지는 필수적이다. 본 연구에서는 악성 댓글 분류 문제를 해결하기 위해서 순서가 있는 분류 레이블의 성질을 활용한 순서형 회귀 (Ordinal regression) 기반의 분류 모델을 제안한다. 일반적인 분류 모형과는 달리 혐오 발언 정도에 따라 다중 레이블을 부여하여 학습을 진행하였다. 실험을 통해 Korean Hate Speech Dataset에 대해 LSTM기반의 모형의 출력층을 다르게 구성하여 순서형 회귀 기반의 모형들의 성능을 비교하였다. 결과적으로 예측 결과에 대한 조율이 가능한 순서형 회귀 모형이 일반적인 순서형 회귀 모형에 비해서 편향된 예측에 대해 추가적인 성능 향상을 보였다.
본 논문에서는 토픽 시그너처(Topic Signature)를 이용하여 댓글을 분류하는 시스템에 대해서 설명한다. 토픽 시그너처는 자질을 선택하는 방법으로 문서요약이나 문서분류에서 사용하는 방법이다. 댓글은 문장의 길이가 짧고 띄어쓰기가 거의 없으며 특수문자들이 많은 특성을 가지고 있다. 따라서 우리는 댓글을 7개의 음절로 나누고 이를 다시 Tri-gram으로 나누어 분류의 기본단위로 본다. 이 Tri-gram을 토픽 시그너처를 이용한 학습 단위로 사용하고, 학습한 자질을 베이지안(Bayesian) 모델을 사용하여 분류한다. 다양한 방법의 모델과 비교 실험을 통하여 구현한 시스템의 성능이 기존의 방법보다 상승되었음을 실험 결과를 통해 알 수 있었다.
댓글은 일반적인 글에 비해 작성가능한 문장의 길이가 짧고, 띄어쓰기나 마침표를 잘 쓰지 않는 등 비정형화된 형식 구조를 가진다. 이러한 댓글의 악성 여부를 판별하기 위하여 본 논문에서는 문장을 n-gram으로 나누고 문서요약이나 문서분류에서 자질 선택에 많이 사용되는 토픽 시그너처(Topic Signature)를 이용하여 자질을 추출한다. 또한 지지 벡터 기계(Support Vector Machines)을 사용하여 댓글의 악성 여부를 판별한다. 본 논문에서는 한글과 영어 댓글에 대한 악성 여부를 판별하는 실험을 통하여 복잡한 전처리과정을 요구하는 기존에 제안된 방법들 보다 우수한 성능을 보이는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.