• Title/Summary/Keyword: 댐퍼 설계

Search Result 234, Processing Time 0.029 seconds

Hybrid Control of Aircraft Landing Gear using Magnetorheological Damper (MR댐퍼를 적용한 항공기 착륙장치의 하이브리드 제어기법 연구)

  • Tak, Jun Mo;Viet, Luong Quoc;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, a hybrid control method that adjusts for the existing force control technique has been presented for consideration. The proposed hybrid control technique does away with the chattering phenomenon occurring in existing force control technique and provides high shock absorption efficiency. In order to design the controller for the landing gear with MR damper, the equation of motion of the landing gear was derived. The hybrid controller was designed after constructing a simulation model using Recur-Dyne, multi-body dynamic analysis software. The hybrid controller can reduce the maximum strut force and displacement based on the skyhook controller, and is able to get the high efficiency by making it work for the additional force control technique. In addition, an effective switching control technique and input shaping technique was applied to prevent the chattering in the drop simulation. Finally, the performance of the landing characteristics was evaluated throughout the various drop simulations.

Rotordynamic Analysis of Automotive Turbochargers Supported on Ball Bearings and Squeeze Film Dampers in Series: Effect of Squeeze Film Damper Design Parameters and Rotor Imbalances (볼 베어링과 스퀴즈 필름 댐퍼로 지지되는 차량용 터보차저의 회전체동역학 해석: 스퀴즈 필름 댐퍼 설계 인자와 회전체 불균형 질량의 영향)

  • Kim, Kyuman;Ryu, Keun
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Modern high-performance automotive turbochargers (TCs) implement ceramic hybrid angular contact ball bearings in series with squeeze film dampers (SFDs) to enhance transient responses, thereby reducing the overall emission levels. The current study predicts the rotordynamic responses of the commercial automotive TCs (compressor wheel diameter = ~53 mm, turbine wheel diameter = ~43 mm, and shaft diameter at the bearing locations = ~7 mm) supported on ball bearings and SFDs for various design parameters of SFDs, including radial clearance, axial length, lubricant viscosity, and rotor imbalance conditions (i.e., amplitudes and phase angles) while increasing rotor speed up to 150 krpm. This study validates the predictive rotor finite element model against measurements of mass, polar and transverse moments of inertia, and free-free mode natural frequencies and mode shapes. A nonlinear rotordynamic model integrates nonlinear force coefficients of SFDs to calculate the transient responses of the TC rotor-bearing system. The predicted results show that SFD radial clearances, as well as phase angles of rotor imbalances, have the paramount effect on the dynamic responses of TC shaft motions.

Displacement Dependency and Capacity Evaluation According to the Cross-Sectional Shape and Aspect Ratio of Steel Rod Dampers (강봉댐퍼의 단면형상과 형상비에 따른 변위의존성 및 성능 평가)

  • Hyun-Ho Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.89-96
    • /
    • 2023
  • In this study, the displacement dependence, strength, and energy dissipation capacity of the steel rod damper were evaluated. The test variables were cross-sectional shape and aspect ratio. The 6th test specimens were made for performance test. From the test results, it was evaluated that the displacement dependence conditions of design code were satisfied in all specimens. And the strength effect according to the cross-sectional shape was minimal. As a result, the strength and energy dissipation capacity of the aspect ratio of 13.7 were evaluated as excellent.

A Study on Adopting Active Suspension Control in Sky Hook System (스카이훅 시스템에의 능동 서스펜션 제어 이론 적용에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.950-955
    • /
    • 2006
  • This paper prosed modelling and design method in suspension system sesign to analyze sky hook damper system by adopting active suspension control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is hon that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of damper in sky hook system and its motion equation then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.

Effect of the sampling time of high-frequency ZOH and a physical damper on stable haptic interaction (고주파 영차홀드의 샘플링 주기와 물리적 댐퍼가 안정적인 햅틱 상호작용에 미치는 영향)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.649-654
    • /
    • 2019
  • Stable haptic interaction with virtual environments is essential not only for the safety of the user but also for improving the immersion of the user. If the coefficient of a virtual spring is increased, the system becomes unstable. Therefore, the coefficient of the virtual spring is limited. The haptic system with the high-frequency zero-order-hold (HF-ZOH) is proposed to enhance the stability margin of a virtual spring. In this paper, the relationship among the sampling period of HF-ZOH, the coefficient of the physical damper, and the maximum stable margin of the virtual spring is analyzed. The lager the coefficient of the physical damper is, the shorter the sampling period of the HF-ZOH is, the larger the stable region of the virtual spring becomes. If the ratio N is larger than 40, the stable region of the proposed method is about three times to eight times that of the previous method, according to the coefficient of the physical damper. Hence the method enables to improve the user's realism in virtual environments.

Frequency Shaped Optimal Control of Semi-active Suspension System Using an MR Damper (자기유변유체를 이용한 반능동형 현가장치의 Frequency shaped 최적 제어)

  • 김기덕;이재형;전도영
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.112-121
    • /
    • 1999
  • An MR(Magneto-Rheological) fluids damper is designed and applied to vibration suppression of a 1/4 car model. The damping constant of MR damper changes according to input current which is controlled in a semi-active way. Several control algorithms are compared in simulations and experiments. The advantage of the proposed Frequency shaped LQ control is that passenger comfort is emphasized in the range of 4~8Hz and driving safety is emphasized around the resonance frequency of unsprung mass.

  • PDF

Optimum Design of Rubber Injection Molding Process for the Preparation of Anti-vibration Rubber (방진고무사출성형의 적정설계)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.490-498
    • /
    • 2010
  • The optimum mold design and the optimum process condition were constructed upon executing process simulation of rubber injection molding with the commercial CAE program of MOLDFLOW(Ver. 5.2) in order to solve the process-problems of K company relating to air-traps and short-shots. The former occurs at the cavity edge of torque-rod-bush and the latter takes place for the injection molding of dynamic dampers. As a result the process problem relating to air traps was solved by optimizing edge-angle and the number of gates to prevent the flow congestion of flow-front and to make the flow-front movement unaffected by congestion. For dynamic dampers of K company the unmolded flaw caused by their unfilled cavity was corrected by installing the air-vent at the confronting locations of both upstream and downstream of flow-front where air traps frequently occur. Besides the unmolded flaws were rectified by altering the position of gate from the upper to the middle or by increasing the number of gates. Thus the process problems of K company relating to air-traps and short-shots of torque-rod-bush and dynamic dampers, respectively, were solved by proper altering of mold design with process simulation of rubber injection molding.

An Experiment Study on Verification for the Performance of Seismic Retrofit System Using of Dual Frame With Different Eigenperiod (진동주기가 다른 듀얼프레임을 이용한 내진보강시스템의 성능검증을 위한 실험적 연구)

  • Oh, Sang-Hoon;Choi, Kwang-Yong;Ryu, Hong-Sik;Kim, Young-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.91-100
    • /
    • 2018
  • The new seismic retrofit system in study propose is the Dual system, which aims to be applied to the seismically vulnerable low-story buildings. The Dual system is composed of existing structure, external retrofit frame and hysteretic steel dampers installed between former two components. The Dual system dissipates the energy by plastic deformation of steel damper caused by relative displacement due to the differences in stiffness, weight, and eigenperiod of each components. The dynamic test with shaking table was performed to verify the seismic performance of the proposed Dual system. As a result of the dynamic test, it is expected that the Dual system will improve the seismic performance due to the reduction of strain of 56% and the damage reduction of 93%, even though the energy is 1.84 times higher than that of the dual system. And the results of the study are presented as basic data of the study for setting the design range of the dual system.