Journal of The Korean Association of Information Education
/
v.24
no.6
/
pp.623-631
/
2020
In the era of COVID-19 global pandemic, e-learning has become new standards and daily life in the name of 'new normal'. This study developed dialogue e-learning contents as opposed to monologue e-learning which is unidirectional and instructor centered and conducted qualitative user experience evaluation of dialogue e-learning contents. A total number of 20 adult students participated and were individually interviewed. Qualitative data analysis was performed. The findings include students' positive perceptions of dialogue e-learning contents such as empathy for various ideas and new format. With regard to personal preference, 55% of participants preferred dialogue e-learning contents because it enables them to focus and share real experiences. Meanwhile, in terms of learning effects, 60% participants selected monologue e-learning contents and mentioned adequate explanations of concepts and explicit information delivery. Based on the results, suggestions on the design and development of dialogue e-learning contents were presented.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.572-573
/
2022
본 논문은 메타버스 환경에서 문제가 대두되고있는 AI 윤리(ethic)를 배경으로 인터랙션을 통해 사람들의 온라인과 오프라인의 결정요소에 직접적으로 영향을 미치는 대화형 AI가 어떻게 윤리적으로 진화될 수 있을지에 대한 공학적 솔루션을 UX 관점으로 찾아보는 기술 전략 연구라고 할 수 있다. 연구의 가설은 AI 의 머신러닝과정에 개별 사용자 그룹의 경험데이터가 반드시 포함되고 고려되어야 AI 는 오류값을 줄이고 윤리적으로 대응할 수 있다는 전제이다. 이를 위하여 본 논문은 기존의 머신러닝과 대화형 AI 의 UX 관점의 다이아로그 플로우 등을 연구 분석하고 사용자 데이터들을 실험하여 메타버스 서비스 환경에서의 기존에 논의되고 있는 컨택스트기반의 AI 머신러닝 과정에 사용자의 정성적 경험데이터를 추가한 윤리적 UX 접근 개념 모델을 제안 하였다. 아직은 개념모델 단계이고 시스템에서는 지금까지 다르지 않았던 비정량적인 감정과 융합적경험을 어떻게 문화적으로 코드화 하고 시스템적인 랭귀지와 연결시킬 수 있을지에 대한사용자 연구가 후속연구로 진행될 예정이다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.447-451
/
2022
본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.
A lot of E-Learning system is supplying the existent item difficulty based learning information to learner. And learner is doing learning contents according to the fixed learning course. It is difficult for learner to get efficient learning effect. Because learner has to belong to fixed item difficulty and learning course even thought learner has different degree that understand studying in learning course. This research proposed the learner adaptive E-learning system that is able to control the item difficulty and learning course to analyze the understanding degree of learner in learning course. In this result, learner is able to improve learning effect to get rid of fixed learning course using bi-directed learning such as off-line learning.
KIPS Transactions on Software and Data Engineering
/
v.9
no.11
/
pp.339-344
/
2020
During COVID-19, education industry is organizing the concept of 'Edutech', which has evolved one step further from the existing e-Learning, by introducing various intelligent information technologues based on the core technology of the 4th industrial revolution and spreading it through diverse contents. Meanwhile, each industries are creating new industries by applying new technology to existing businesses and ask for needs of cultivating human resources who understand the existing traditional ICT technology and industrial business which can solve a newly rising problems. However, it is difficult to build contents for cultivating such human resources with the existing e-learning of transferring knowledge by one-way or some two-way commnication system which has established some interactive conversational system. Accordingly, this study conducted a research on a cooperative e-learning system that enables educators to communicate with learners in real time and allows problem-solving education based on the existing two-way communication system. As a result, frame for contents and prototype was developedp and artially applied to the actual class and conducted an efficiency analysis, which resulted in the validation of being applied to the actual class as a simulation-based cooperative content.
This paper is the UX-based technology strategy research which is a solution to how conversational AI can be ethically evolved in the Metaverse environment. Since conversational AI influences people's on-offline decision-making factors through interaction with people, the Metaverse AI ethics must be reflected. In the machine learning process of conversational AI, cultural codes along with user's personal experience data must be included and considered to reduce the error value of user experience. Through this, the super-personalized Metaverse service can evolve ethically with social values. With above hypothesis as a result of the study, a conceptual model of a forward-looking perspective was developed and proposed by adding user experience data to the machine learning (ML) process for context-based interactive AI in the Metaverse service environment.
Segmenting the compartments of neurons, such as axons, dendrites, and cell bodies, is helpful in the analysis of neurological phenomena. Recently, there have been several studies to segment the compartments through deep learning. However, this approach has the potential to include errors in the results due to noise in data and differences between training data and actual data. Therefore, in order to use these for actual analysis, it is essential to proofread the results. The proofreading process requires a lot of effort and time because an expert must perform it manually. We propose an interactive neuron structure proofreading method that can more easily correct errors in the segmentation results of a deep learning. This method proofread the neuron structure based on the characteristics of the neuron with structural consistency, so that a high-accuracy proofreading result can be obtained with less interaction.
Hyun-Su Yu;Seo-Yeon Nam;Joo-Yeong Baek;So-Yeong Ahn;Se-Jin Hwang;Gyu-Young Lee
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.1092-1093
/
2023
본 논문에서는 한국무역협회(KITA)의 오픈상담 자료들을 바탕으로, 딥러닝 기술을 이용하여 구현한 해상물류 대화형 챗봇 ShipMate를 제안한다. 챗봇 ShipMate는 KoGPT2를 활용한 답변과 Doc2Vec 기반의 유사 상담사례 추천이 가능하고, 무역상담을 시간제약 없이 진행할 수 있기 때문에, 기존 해상물류 서비스의 접근성을 한층 더 높일 수 있으며 이를 실험을 통해 입증하였다.
Mun Seop Yun;Sang Hyuk Yoon;Ki Won Lee;Se Hoon Kim;Min Woo Lee;Ho-Young Kwak;Won Joo Lee
Journal of the Korea Society of Computer and Information
/
v.29
no.4
/
pp.23-30
/
2024
In this paper, we propose a deep learning-based personalized senior care service application. The proposed application uses Speech to Text technology to convert the user's speech into text and uses it as input to Autogen, an interactive multi-agent large-scale language model developed by Microsoft, for user convenience. Autogen uses data from previous conversations between the senior and ChatBot to understand the other user's intent and respond to the response, and then uses a back-end agent to create a wish list, a shared calendar, and a greeting message with the other user's voice through a deep learning model for voice cloning. Additionally, the application can perform home IoT services with SKT's AI speaker (NUGU). The proposed application is expected to contribute to future AI-based senior care technology.
Park, Seong-Hyeon;Hong, Seok-Hun;Hwang, Su-Hyeon;Nasridinov, Aziz;Yoo, Kwan Hee;Hong, Jang-Eui
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.628-630
/
2018
인공지능에 대한 연구가 최근 이슈가 되면서, 딥러닝 기술의 비약적인 발전 덕분에 대화형 에이전트가 인터페이스의 역할을 하고 있다. 이 중에서 최근 여러 대학에서 서비스로 지원하는 챗봇 시스템의 문제점에 대하여 개선된 시스템을 제안하고, 이를 구현하여 실험을 통해 연구하고자 한다. 기존 챗봇 시스템이 가진 문제점을 보완한 시스템은 서비스 사용자가 질의하는 의도에 더 알맞은 응답을 제공하여 서비스 사용자의 불편함을 최소화하고, 사용성과 편의성을 최대화 하는 것을 목적으로 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.