• Title/Summary/Keyword: 대형파괴재하시험

Search Result 7, Processing Time 0.02 seconds

Behavior Analysis of Soil Nailed Wall through Large Scaled Load Test (대형파괴재하시험을 통한 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Lee, Seunghyun;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.51-60
    • /
    • 2008
  • Soil nailing systems are generally many used to the temporary structure in underground excavations and reinforcements of slopes in Korea. However, large-scaled experimental studies related to soil nailing systems are mostly studies related to performance monitoring and field pullout tests. Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea. In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated. Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nailed walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls. And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out.

  • PDF

Behavior Analysis of Assembling Soil Nailed Walls through Large Scaled Load Test (대형파괴재하시험을 통한 조립식 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Ki, Minju;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.23-36
    • /
    • 2008
  • Soil nailing system can be mentioned to a method of supporting as the shear strength of in-situ soils is increased by passive inclusions. In the general soil nailing system, facing walls are used in two kind of a lattice concrete block or a cast in placed concrete wall. A case of lattice concrete blocks is used in slow slopes greater than 1(V):0.7(H). Also, a case of a cast in placed concrete wall is used in steep slopes less than 1(V):0.5(H). The cast in placed concrete walls are constructed to 30 cm thick together with a shotcrete facing. In this study, the assembling soil nailing method as a new soil nailing system will be proposed. This method is assembly construction using precast concrete panels with 20 cm thick. So, the ability of construction and the quality of facings can be improved more than a conventional soil nailing system. This method can be obtained the effects that a global slope stability increase, as precast concrete panels are immediately put on cutting face after excavating a slope. In this study, confining effects of concrete panels using the assembling soil nailing system were found out by large scaled load tests. In the tests, the load-settlement relationship to an assembling soil nailing system due to the stiff facings as concrete panels appeared to be better than a typical soil nailing system with shotcrete facings.

  • PDF

Evaluation of Size Effects of Shallow Foundation Settlement Using Large Scale Plate Load Test (대형 평판재하시험을 이용한 얕은 기초의 침하에 대한 크기효과 평가)

  • Kim, Kyung-Suk;Lee, Sang-Rae;Park, Young-Ho;Kim, Sung-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.67-75
    • /
    • 2012
  • This paper addresses the size effect of shallow foundation settlement in very dense weathered granite soil commonly encountered in bridge foundation. Load-settlement curves measured from the plate load tests of 5 different plate sizes in 2 sites were analyzed. The test results showed that the ground beneath the plate was considered not to reach the failure state and the settlement continuously increased proportionately as load increased. The result implies that settlement would govern the stability or serviceability of foundation on very dense weathered soil. The size effect is expressed as a relationship of subgrade reaction modulus to the size of plate. Compared with the previous relationships, the size effect in this result was more prominent and indicated that settlement prediction using the previous method could possibly underestimate the settlement of foundation in dense weathered granite soil.

A Case Study on the Large Scaled Load Test of Soil Nailed Walls (쏘일네일링 벽체에 대한 대형파괴재하시험 사례)

  • Kang, In-Gyu;Ryu, Jeong-Su;Kwon, Young-Ho;Lee, Seung-Hyun;Park, Shin-Young
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.135-145
    • /
    • 2006
  • Soil nailing systems are generally many used in underground excavations and reinforcements of slopes since the first construction as a temporary retaining wall in 1993, Korea. In recently, they are many attempts to expand the permanent reinforcements of slopes However, experimental studies related to soil nailing systems are insufficient Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nail walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out

  • PDF

Assessment of Geosynthetic Soilbag Method to Restore the Roadbed of Railway (철도노반 복구를 위한 토목섬유 Soilbag 공법의 적용성 평가)

  • Hwang, Seon-Keun;Koh, Tae-Hoon;Park, Sung-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.65-75
    • /
    • 2004
  • Roadbed failure due to the natural disaster may bring out social and economic damage such as the loss of life and property, the consumption of time and cost for recovery, and the delay of logistics in railway In this study, the method using geosynthetic soilbag was applied to rehabilitation of the railway roadbed which was failed by disaster. The full scale tests with the simulated train loading were performed in order to evaluate the static and dynamic performance at the railway roadbed using geosynthetic soilbag. The results of these tests were compared with unreinforced and reinforced cases with geosynthetic soilbag, respectively The data gathered by various measurement devices from these full scale tests would be useful to evaluate and understand the roadbed with geosynthetic soilbag. In conclusion, geosynthetic soilbag was evaluated as a permanent restoration method to reinforce the roadbed of railway.

Performance Evaluation of Full Scale Reinforced Subgrade for Railroad with Rigid Wall Under Static Load (정하중 재하 시 실물 강성벽 일체형 철도보강노반의 성능평가)

  • Kim, Dae-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.31-42
    • /
    • 2015
  • The Reinforced subgrade for railroad (RSR) was constructed for one way railway line with the dimension of 5 m high, 6 m wide and 20 m long to evaluate its performance under train design load. The RSR has characteristics of short length (0.3-0.4 H) of reinforcement and rigid wall, 30 and 40 cm vertical spacing of reinforcement installation. To enhance economics and constructability, three kinds of connections (welding, hinge & bolt, bold wire) were also designed to realize the integration between rigid wall and reinforced subgrade. Two times of static loading tests were done on the full size railroad subgrade. The maximum applied pressure was 0.98 MPa (the maximum test load 5.88 MN), which corresponds to 19.6 times of the design load for railroad subgrade, 50 kPa. The performance on the RSR was evaluated with the safety on the failure, subgrade bearing capacity and settlement, horizontal displacement of wall, and reinforcement strain. Based on the full scale test, we confirmed that the RSR with the conditions of 0.35 H (35% of height) short reinforcement length, hinge & bolt type connection for integration between rigid wall and reinforced subgrade, and 40cm vertical spacing of reinforcement installment shows good performance under train design load.

Reclamation and Soil Improvement on Ultra Soft Soil (II) - Soil Improvement (초연약지반의 매립 및 지반개량 사례 연구 (II) - 지반개량)

  • Na, Yung-Mook;Kim, Hee-Hong;Kwon, Duk-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.33-44
    • /
    • 2005
  • The 'Silt Pond' is 180 hectares in size and contained ultra soft slurry-like soil varying between 3 to 20 meters in thickness. Soil improvement work in the Silt Pond commenced by installing vertical drains in the mid of 1996, following completion of sand spreading up to +4.0m CD. Prior to soil improvement work in the main area of Silt Pond, experimental tests including laboratory tests with a large diameter consolidation cell and pilot tests were carried out to investigate the deformation behavior of an extremely soft soil. Due to its high compressibility, large strain usually occurred in the initial stage of deformation does not comply with Terzaghi's one dimensional consolidation theory. Taking into consideration experimental test results, the soil improvement works were carried out in main area of Silt Pond containing ultra soft soil. This paper presents the case study on improvement of ultra-soft soil.

  • PDF