• Title/Summary/Keyword: 대형지하공간

Search Result 145, Processing Time 0.025 seconds

Proposal of Disaster Safety Model based on Geospatial Standard (공간정보표준 기반의 재난안전모델의 제안)

  • Hwang, ByungJu;Ha, Donghun;Yang, Jaeyu;Kim, Jinhyug;Kwan, Jiyong;Im, SeongHo;Kim, Jangwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.425-427
    • /
    • 2018
  • As the urban scale changes and the living space changes in three dimensions, the Ministry of Land, Infrastructure and Transport continuously builds various and high quality spatial information such as three-dimensional spatial information, indoor spatial information, underground spatial information and precision road map. However, although various disasters and safety accidents are rapidly increasing due to the enlargement and complexity of cities, safety management using spatial information is relatively insufficient. In this paper, we propose a data model for comparing and analyzing typical domestic and international spatial information construction cases and providing disaster safety services based on spatial information standards.

  • PDF

경안천변 충적지하수의 수리지구화학 연구: 하천변에서의 양수에 수반된 지하수 유동 및 수질 변화

  • Jeon Jong-Uk;Yun Seong-Taek;Gwon Jang-Sun;Yun Seong-Mun;Gang Jeong-Ok;Han Chan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.332-335
    • /
    • 2005
  • 경안천변의 충적층 지하수를 대상으로 농업활동 및 양수에 수반된 지하수 오염과 수리적 변동에 따른 수리지구화학 변화를 연구하였다. 사행하는 경안천에 의해 넓게 형성된 충적층 지역에서는 사계절 비닐하우스 농업이 활발히 이루어지고 있으며, 이를 위해 강변에 설치된 대형 관정을 통하여 지하수를 대량 양수하고 있다. 이러한 상황은 여러모로 강변여과 현장과 흡사하다. 지하수 내 주요 용존 이온의 공간적 분포는 양수에 수반된 수리적 변동과 밀접한 상관관계를 나타내었다. 즉, 대단위 양수에 의하여 충적 지하수계로의 하천수 유입이 가속화되며, 이에 따른 희석 효과에 의해 충적 지하수의 질산염 농도가 감소하는 경향을 보여주었다.

  • PDF

A Study on failure mechanism and load-bearing capacity of single-shell tunnel lining (싱글쉘 터널 라이닝의 파괴 메카니즘 및 지보성능에 관한 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Chang, Soo-Ho;Bae, Gyu-jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2006
  • This study investigates the failure mechanism and load-carrying capacity of a single-shell lining which has no disturbance in transfer of shear force, with respect to a conventional double-shell lining which has separation between layers of shotcrete lining and secondary concrete lining by water-proof membrane. In order to evaluate the capacity, a 2-D numerical investigation is preliminarily carried out and then real-scale loading tests with tunnel lining section specimens are performed on the condition given by the numerical investigation. In the test, a concentrated load is applied for considering a released ground load or rock wedge load. Through this study, it appears that the single-shell lining takes the load-bearing capacity 20% higher than in case of the double-shell lining. In addition, a possibility of a composite single-shell shotcrete layer composed by multiple bonded layers partly involving different contents of high-capacity additives is shown thereby leading to use of less amount of the high-capacity additives on the condition of taking a similar load-bearing capacity.

Behavior of the Ground in Obliquely Crossed area Due to Tunnel Excavation Under the Existing Tunnel (기존터널에 근접하여 경사로 교차되는 하부터널굴착에 따른 교차부지반의 거동)

  • Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2005
  • The behaviors of the ground in crossed zone and the existing upper tunnel in shallow cover due to the excavation of new lower tunnel crossed to that was studied. Model test was performed in the large scale test pit, the size was '$4.0m(width){\times}3.8m(height){\times}4.1m(length)$'. Test ground was constructed uniformly by sand in middle density and test with the crossed angle of $56^{\circ}$ (obliquely) were performed. The numerical analysis was performed on equal condition with model test. Results of the study by model test and numerical analysis show that earth pressure and settlement of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. Model test shows that upper tunnel blocks stress flow due to the longitudinal arching effect by excavation of lower tunnel.

  • PDF

Stability analysis of shield tunnel segment lining by field measurement and full scale bending test (실대형 하중재하 시험 및 현장계측을 통한 쉴드터널 세그먼트 안정성 분석)

  • Lee, Gyu-Phil;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.611-620
    • /
    • 2019
  • The shield tunnel was mostly applied to cable tunnel with a diameter of 3~4 m, recently 7.8 m diameter shield tunnel was constructed in the lower section of the Incheon International Airport runway and is planning or under construction to roads and railway tunnels in the lower section of the Han River. Segments are also becoming larger as the shield tunnel cross-section increases, which causes a number of problems in the design, construction, and performance evaluation of segments. In this study, segment lining structural safety, criteria for serviceability check considering axial forces and quality control method for approximately 8 m in diameter shield tunnel were reviewed by field measurements and full scale bending test.

Behavior of the Ground in Rectangularly Crossed Area due to Tunnel Excavation under the Existing Tunnel (II) (기존터널에 근접한 직각교차 하부터널의 굴착에 따른 교차부지반의 거동 (II))

  • Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.133-141
    • /
    • 2005
  • The behavior of the ground in crossed zone due to the excavation of new lower tunnel rectangularly crossed to that was studied by model tests and numerical analysis in shallow cover. Results of the model tests show that earth pressure of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. By the numerical analysis, minimum principal stress in crown of single tunnel has more decrease than parallel tunnel or crossed tunnel. Vertical stress at rectangularly crossed tunnel decrease more than single tunnel by stress shadow.

  • PDF

Pillar load and ground deformation in 2-arch tunnel in the jointed rock mass (절리암반에서 2-Arch 터널의 필라하중과 지반변위)

  • Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • Loads on the pillar and ground deformation in 2-arch tunnel, which is excavated in the rock mass with regular discontinuities, depending on the dips of discontinuities and the construction sequences were experimentally studied. Large scale model tests in the biaxial test facility were performed. Tested model (width 3.3m, height 3.0m, and length 0.45m) for 2-arch tunnel in 1/10 scale were built with various dips. Test results show that discontinuities have greate affects on the behavior of the 2-arch tunnel, especially on the pillar loads and ground deformation.

  • PDF

Determining Parameters of Dynamic Fracture Process Analysis(DFPA) Code to Simulate Radial Tensile Cracks in Limestone Blast (석회암 내 방사상 발파균열을 예측하기 위한 동적파괴과정 해석법의 입력물성 결정법에 관한 연구)

  • Kim, Hyon-Soo;Kang, Hyeong-Min;Jung, Sang-Sun;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.6-13
    • /
    • 2013
  • Recently, complaints or environmental problems caused by the noise and dust generated from crusher of the mine and quarry are emerging. Therefore mining facilities such as crushers and mills have been installed in an underground. In order to facilitate crusher equipments in the underground, excavation of large space is required and then the stability of the large space underground structure is an important issue. In this study, the blast experiments, which use a block of the limestone, are performed. Based on the blast experiments, the numerical model was prepared and simulated using dynamic fracture process analysis code(DFPA) with considering the rising time of applied borehole pressure and microscopic tensile strength variation. Comparing the non-dimensional crack length and no-dimensional tensile strength obtained from blast experiments and numerical analyses, the input parameters of DFPA code for predicting a radial tensile crack in limestone blasting were determined.

A Study on Stability Analysis of Large Underground Limestone Openings considering Excavation Damaged Zone (굴착손상영역을 고려한 대형 석회석 갱내채광장의 안정성 분석 연구)

  • Kwon, Min-Hyuk;Choi, Sung-Oong;Kim, Chang-Oh
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.131-142
    • /
    • 2016
  • Investigation for rock joints, inspection for rock core, and laboratory tests for rock specimens, in this study, have been performed for identification of the extent and properties of Excavation Damaged Zone in a underground limestone mine, which plans to enlarge the size of openings to improve the production rate. Properties of EDZ and surrounding rock masses have been used numerically for discontinuum analysis, and it is concluded that the effect of EDZ can be increased with increasing the opening size and a blasting pattern of high precision can be suggested for the counterplan.

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.