• Title/Summary/Keyword: 대표변형률

Search Result 91, Processing Time 0.023 seconds

반도체 MEMS 공정에 적용하기 위한 micro blaster 식각 특성

  • Kim, Dong-Hyeon;Gang, Tae-Uk;Kim, Sang-Won;Gong, Dae-Yeong;Seo, Chang-Taek;Kim, Bong-Hwan;Jo, Chan-Seop;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.245-245
    • /
    • 2010
  • 최근에 반도체 소자 및 마이크로머신, 바이오센서 등에 사용되는 미세 부품에 대한 연구 개발이 활발히 진행되고 있다. 미세 부품을 제작하기 위한 MEMS 공정은 대표적으로 화학용액을 이용한 습식식각, 플라즈마를 이용한 건식식각 등이 주를 이룬다. Micro blaster는 경도가 강하고 화학적 내성을 가지며 용융점이 높아 반도체 MEMS 공정에 어려움이 있는 기판을 다양한 형태로 식각 할 수 있는 기계적인 식각 공정 기술이라 할 수 있다. Micro blaster의 식각 공정은 고속의 날카로운 입자가 공작물을 타격할 때 입자의 아래에는 고압축응력이 발생하게 되고, 이 고압축 응력에 의하여 소성변형과 탄성변형이 발생된다. 이러한 변형이 발전되어 재료의 파괴 초기값보다 크게 되면 크랙이 발생되고, 점점 더 발전하게 되면 재료의 제거가 일어나는 단계로 이루어진다. 본 연구에서는 micro blaster 장비를 반도체 MEMS 공정에 적용하기 위한 식각 특성에 관하여 확인하였다. Micro blaster 장비와 식각에 사용한 파우더는 COMCO INC. 제품을 사용하였다. Micro blaster를 $Al_2O_3$ 파우더의 입자 크기, 분사 압력, 기판의 종류, 노즐과 기판과의 간격, 반복 횟수, 노즐 이동 속도 등의 공정 조건에 따른 식각 특성에 관하여 분석하였다. 특히 실제 반도체 MEMS 공정에 적용 가능한지 여부를 확인하기 위하여 바이오 PCR-chip을 제작하였다. 먼저 glass 기판과 Si wafer 기판에서의 식각률을 비교 분석하였고, 이 식각률을 바탕으로 바이오 PCR-chip에 사용하게 될 미세 홀과 미세 채널, 그리고 미세 챔버를 형성 하였다. 패턴을 형성하기 위하여 TOK Ordyl 사의 DFR(dry film photoresist:BF-410)을 passivation 막으로 사용하였다. Micro blaster에 사용되는 파우더의 직경이 수${\mu}m$ 이상이기 때문에 $10\;{\mu}m$ 이하의 미세 채널과 미세홀을 형성하기 어려웠지만 현재 반도체 MEMS 공정 기술로 제작 연구되어지고 있는 바이오 PCR-chip을 직접 제작하여 micro blaster를 이용한 반도체 MEMS 공정 기술에 적용 가능함을 확인하였다.

  • PDF

Computer Aided Teaching of Structural Engineering Using Adaptive Schemes in the Finite Element Method

  • Yoon, Chong-Yul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • A simple outline for teaching adaptive scheme based finite element method for planar problems as a part of computer aided teaching of structural engineering curriculum is presented. Displacement based finite element formulation for planar problems and representative strain value based adaptive scheme for mesh generation are considered. As examples, a cantilever beam with a concentrated load treated as a planar problem and stretching of a plate with a circular hole are analyzed with displacement based finite element method with adaptive meshes. The examples and outlines show how adaptive based finite element method may become an essential part of computer aided teaching of structural engineering.

Experimental Study for Establishment of Long-term Monitoring System using Fiber Optical Sensor for Pipeline System for Waste Transportation (광섬유센서를 이용한 쓰레기 이송관로의 장기 계측시스템 구축을 위한 실험적 연구)

  • Kim, Haeng-Bae;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.35-43
    • /
    • 2016
  • Recently, the pipeline system for waste transportation has been increasingly constructed as new solution for the waste collection and disposal system by constantly increasing domestic waste which issued as social problem. The pipeline system is constructed through long distance, so proper long-term monitoring system is necessary which available to detect the damage location for the effective maintenance. In this paper, the experimental study is carried out to evaluate the applicability of optical strain gauge sensor based on FBG for the long-term monitoring system. Three test parameters such as pressure leaking, blockage and deformation are considered as typical damages for real-scale pipeline test specimen. In order to measure flexural and volumetric strain and temperature, three FBG sensors are installed at each monitoring sections. From the test results, this study suggested effective methods of sensor installation and arrangement. Also the sensor spacing for the design of monitoring system using FBG sensor is derived by the correlation of distances from deformation between sensor responses.

A Study on the Relationship between Void Ratio and Permeability by Constant Strain Rate Consolidation Test (일정변형률 압밀시험을 이용한 간극비-투수계수의 관계 연구)

  • Joo, Jong-Jin;Lim, Hyung-Duk;Lee, Woo-Jin;Kim, Dae-Kyu;Kim, Nak-Kyung;Kim, Hyung-Joo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.15-25
    • /
    • 2002
  • The permeability coefficient is one of the fundamental engineering properties of soft clays. Consolidation process as well as migration of pollutants in soil are affected the permeability coefficient, which generally decreases with the reduction in void ratio during consolidation. After Kozeny(1927) and Carman(1956), many researchers have proposed the relationships between void ratio and permeability in such forms as; (1) log e - log k(1+e), (2) e - log k, or (3) log e - log k. Constant rate of strain (CRS) tests was performed with undisturbed samples obtained at Kunsan and Kimhae deposits, which are representative Korean marine clay. From the results of the tests, the relationships were found valid for Kunsan and Kimhae clays. The experimental correlation $C_k=0.5e_o$ was satisfied with Kimhae clay but not with Kunsan clay.

  • PDF

Dynamic Behavior of Decomposed Granite Soils (화강풍화토의 동적 거동)

  • 이종규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.175-183
    • /
    • 1999
  • Recently, problems related to vibrations of decomposed granite soils have acquired increasing attention in Korea because those soils cover approximately one third of the country. Both resonant column and cyclic triaxial test were performed to investigate deformation characteristics of unsaturated and cement-mixed decomposed granite soils in Suwon region. The important soil parameters in this respect are the shear moduli, dynamic moduli of elasticity and damping ratios. The dynamic parameters are influenced by variables such as strain amplitude, ratio of loading cycles, and degree of saturations, etc. Test results and data have shown that the optimum degree of saturation to the maximum shear modulus due to a capillary menisci effect was about 17~18 % at low strain amplitude and 10~15 % at intermediate strain amplitude. This paper suggests the range of threshold strain and mean shear modulus of decomposed granite soils in Suwon region. It also proposed the empirical relationship between the dynamic parameters for cement-mixed and non-mixed decomposed granite soils.

  • PDF

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.

Behavior of Orthotropic Composite Plate Due to Random Poisson's Ratio (직교이방성 복합적층구조의 거동: 포아송비의 임의성에 의한 영향)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.627-637
    • /
    • 2009
  • Composite materials have been employed in the various engineering applications due to high mechanical performances including high strength-weight ratio and high degree of free formability. Due to complex manufacturing process, however, it can have intrinsic randomness in the material constants which affect the deterministic behavior of the composite structures. In this study, we suggest a formulation for stochastic finite element analysis considering the spatial randomness of Poisson's ratio. Considering the reciprocal relation between elastic moduli and Poisson's ratios in the two mutually orthogonal axes, one of two values of Poisson's ratio can be expressed in terms of the other. Using this, the relation between stress resultants and strains is derived in the ascending order of power of the stochastic field function, which can be directly used in the formulation to obtain the coefficient of variation of responses. The adequacy of the proposed scheme is demonstrated by comparison with the results of Monte Carlo analysis.

Transient Creep Analysis in Indentation Tests (압입시험의 천이 크리프 해석)

  • Lee, Jin-Haeng;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.81-90
    • /
    • 2012
  • The indentation test, which is one of the testing methods for evaluating the mechanical properties of materials, can be applied to the evaluation of creep properties. Many studies related to the indentation creep test, however, have just focused on the characteristics of the steady-state creep, so there are wide discrepancies between the uniaxial test and the indentation test. To obtain accurate creep properties, it is therefore important to consider the effects of transient creep. In the present work, the Ogbonna et al.'s work on the spherical indentation test including the transient creep was expanded and applied to the conical indentation creep test. The characteristics of the transient creep were analyzed via finite element simulations and compared with those obtained through spherical indentation. Other effects, such as elastic strain, indenter shape, contact area, and representative strain, which have not been considered properly in prior studies on the creep test, are also discussed.

Comparison of Recognition Performance of Color QR Codes for Inserted Pattern Information (칼라 QR코드의 패턴 종류에 따른 인식 성능 비교)

  • Kim, Jin-soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • Currently, the black-white QR (Quick Response) codes have been used widely in consumer advertising fields and the study of color QR codes have received a growing demand because of much higher data encoding capacity. Color QR codes can be reproduced by the printing and scanning processes, however, these encounter colors distortion caused by insufficient lighting, low resolution of camera and geometric deformation during the capturing processes. In order to overcome these problems, this paper proposes an efficient decoding algorithm for color QR codes with inserted patterns, which are dealt with conventional studies. These are evaluated in view of the recognition rate under different noise conditions, for example, Gaussian noises/blurring and geometric deformation. Experimental results demonstrate that the color QR codes with simple pattern can resist the distortion of Gaussian noises/blurrings.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.