• Title/Summary/Keyword: 대칭화염

Search Result 8, Processing Time 0.031 seconds

An experimental study on the structure of the jet flame in cross flow (균일 유동장에 수직으로 분사된 제트화염의 구조에 대한 실험적 연구)

  • 유영돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.84-89
    • /
    • 1994
  • 주유동에 수직으로 분사된 제트 화염의 구조는 이해하기 위하여 화염 길이와 온도를 측정하고 reactive mie scattering 방법을 이용하여 단면 가시화를 실시하였다. 주유동 속도와 제트 분사 속도의 증가에 따라 화염 길이도 함께 증가함을 알 수 있고, 단면 가시화 결과 화염 내부에 존재하는 inner vortical structure는 일반적인 동축제트 화염과 같은 대칭 구조를 갖지 앉고 유동 조건에 따라 inner vortical motion 의 생성 위치가 변화함을 알 수 있다 이는 본 유동장의 특성 중의 하나인 bound vortex와 제트와 주유동이 접하는 상류 면에서 발생하는 rolling-up 의 강도에 좌우됨을 알 수 있다.

  • PDF

Numerical Study on the NH3/CH4 Symmetric Premixed Counterflow Flames Part II: Investigation of Flame Structure and Reaction Path (암모니아/메탄 예혼합 대향류 대칭 화염에 관한 수치 해석적 연구: Part II 화염의 구조 및 반응 경로 해석 )

  • JINSEONG KIM;KEEMAN LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.748-757
    • /
    • 2023
  • Numerical analysis was conducted to confirm the characteristics of extinction behavior in NH3/CH4 counterflow symmetrical flames. Numerical simulations were run on CHEMKIN-PRO, using the OPPDIF code, with Okafor's mechanisms, which had the lowest error rate compared to Colson's experimental data in the our previous part I study. The chemical interactions of merged flames were examined by analyzing the production rate of major chemical species and key radicals with the volume fractional percentage of ammonia and global strain rate. The interaction phenomenon of the flames could be identified by observing the main chemical reaction path of the merged flames at the stagnation plane.

Chemical Interaction in Downstream Flows of SNG/Air Symmetric Premixed Counterflow Flame (SNG/Air 예혼합 대향류 대칭화염의 후류 유동장에서 화학적 상호작용)

  • KANG, YEONSE;LEE, KEEMAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.668-679
    • /
    • 2018
  • Experimental and numerical data were compared through a counterflow burner for the characteristic of basic flame about SNG- C11. In order to use the numerical mechanism accurately, the validation was carried out at strain rate ($a_g=30$, $120s^{-1}$) and the UCSD model showed satisfactory results. The effective Lewis number of the extinction boundary, and the behavior of extinction for the symmetric flames of the SNG-C11, could be explained through the trend of $Le_V$, and the flame of the extinction condition was inspected by the major species, key radicals and the chemical reaction paths. The interactions phenomenon in the merged flames has chemical reaction path for producing $HO_2$ were generated at stagnation point. It can be expected the one of major factors in interaction phenomenon.

Numerical Study on the NH3/CH4 Symmetric Premixed Counterflow Flames - Part I Characteristics of Extinction Behavior (암모니아/메탄 예혼합 대향류 대칭화염에 관한 수치해석적 연구 - Part I 소화거동의 특성)

  • EUNSEO JIN;KEEMAN LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.1
    • /
    • pp.47-58
    • /
    • 2023
  • Experimental data conducted by Colson et al. and numerical data conducted in this study were compared through counterflow flames to understand of the characteristic of basic flame about mixture of ammonia/methane. In order to use the suitable numerical mechanism, the validation was performed using total four mechanisms and the Okafor's mechanism showed satisfactory experimental results. The extinction boundary of the stability map could be explained through the effective Lewis number and the trend of LeD. The extinction behavior of the flame was different under the lean and rich symmetric conditions and it was investigated by the major variables, global strain rate (ag) and mole fraction of ammonia (ΩNH3).

A Schlieren-photographic Visualization of the Methane/Air Premixed Flame Propagating inside a Rectangular Tube Locally-perturbed by an Ultrasonic Standing Wave (국소적 정상초음파장에 의해 교란되어 사각튜브형 연소실 내에서 전파하는 메탄/공기 예혼합화염의 슐리렌기법에 의한 가시화)

  • Kim, Min Sung;Kim, Jeong Soo;Hwang, Yeong Yeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.43-49
    • /
    • 2014
  • This experimental study has been conducted to scrutinize the effects of an ultrasonic standing wave (USW) on the propagating velocity and structure of methane/air premixed flame. Propagating flame was caught by high-speed Schlieren photography, and the variation of flame-behavior was analyzed in detail. It is revealed that horizontal splitting in burnt zone is resulted by the USW, and the flame propagation velocity is augmented due to the strengthened chemical reaction. Evolutionary feature of the flame perturbed by USW, maintaining a pseudo-symmetry of top and bottom flame-front about the propagation axis tends to be free from buoyancy effect.

NO Formation in Partially Premixed Counterflow Flames;Comparison of Computed and PLIF Results (부분예혼합 대향류 화염에서의 NO 생성특징;수치해석 및 PLIF 결과 비교)

  • Lee, Woong-Jae;Lee, Won-Nam;Cha, Min-Suk;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.57-66
    • /
    • 2000
  • OH radical and NO distributions have been measured in methane/air partially premixed counterflow flames(${\alpha}$=1.0, 0.8, 0.6) using PLIF technique. The results are discussed and compared with the numerical analysis results obtained under the same flame conditions. Measured OH and NO LIF signals agree with the computed concentration distributions. Both numerical and experimental results indicate that the structural change in a flame alters the NO formation characteristics of a partially premixed counterflow flame. The nitrogen dilution also changes flame structure, temperature and OH radical distributions and results in the decreased NO concentrations in a flame. The levels of decrease in NO concentrations, however, depends on the premixedness(${\alpha}$) of a flame. The larger change in the flame structure and NO concentrations have been observed in a premixed flame($\alpha$=1.0), which implies that the premixedness is likely to be a factor in the dilution effect on NO formation of a flame.

  • PDF

Test and Evaluation for the Mixing Quality in the Premixer of DLE Combustor (DLE(Dry Low Emission) 연소기 예혼합기의 혼합성능 예측에 대한 시험평가)

  • 우유철;최장수;박동준
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.2-2
    • /
    • 1998
  • 현대우주항공(주)가 미국의 AlliedSignal사와 함께 국제 공동 개발중인 10MW급의 ASE120 엔진은 항공용 엔진을 산업용으로 개조한 개조형 엔진으로서 희박 예혼합 예기화(Lean Premix prevaporization) 방식의 연소기를 쓰고 있다. 이 연소기는 연소에 관여하는 공기량을 부하에 따라 가감하여 일정 공연비를 유지하는 air staging법을 사용하고 있으며 이로써 연소화염온도를 일정치로 조절하여 연소중 생성되는 유해가스의 양을 목표치 이하로 제어한다. 연소화염온도 설계치는 2912$^{\circ}$F이며 배기가스 발생량은 NOx, CO모두 궁극적으로 10ppmv 이하를 목표로 하고 있다. 이러한 건식 저 배기가스(Dry Low Emission) 연소기가 그 역할을 다하기 위하여는 양호한 혼합기를 확보하는 것이 선결 문제이다. 본 연구소에서는 두 개의 혼합기(mixing can)가 180$^{\circ}$ 간격으로 환형 연소기(annular type)에 접선 방향으로 설치되어 대칭을 이루고 있고 혼합기의 혼합성능을 측정하기 위하여 제작된 시험장치에는 하나의 혼합기만을 쓰고 있다.

  • PDF

Analysis of Vertical Combustion and Carbonization Patterns of Floor Materials When Using a Needle Flame (니들 플레임에 의한 바닥재의 수직 연소 및 탄화 패턴의 해석에 관한 연구)

  • Park, Min-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.101-106
    • /
    • 2020
  • This study analyzed flame growth characteristics and carbonization patterns when floor materials were burned vertically using a needle flame produced for this study. It was found that PVC flooring was fire retardant and the area under direct flame contracted inward. Vertical combustion causes solidification in the form of a lump at the bottom and also generates soot in a pattern that progresses upwards. This study found that laminated flooring exhibited no fire retarding characteristics and that the laminated layer of its upper surface was destroyed by fire, causing irregular delamination. The carbonization ranges at the left and right sides were determined to be symmetrical. A vertical combustion test of a sample carpet showed that it exhibited no fire-retarding characteristics. It was observed that if heat accumulated in the carpet, the flame formed an ascending air current, and that when flammable materials were present around the flame, they further accelerated the diffusion of the flame. The carbonization pattern at the carpet surface exposed to direct flame revealed that the carpet surface had melted and had flown downwards and that many tiny holes formed on it.