• Title/Summary/Keyword: 대차 프레임

Search Result 87, Processing Time 0.022 seconds

스트레인게이지를 이용한 고속화차 대차프레임의 정하중시험 및 진동가속도 측정시험

  • 홍재성;함영삼;백영남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.114-114
    • /
    • 2004
  • 주)태양금속에서 고속화차 용접구조형 대차를 채택하여 화차론 제작하였는데 한국철도기술연구원에서는 대차의 구조강도론 검증하기 위해 구조해석을 시행한 후 스트레인게이지를 실재 대차에 장착하여 정하중 시험을 시행하였고 또한 진동가속도계를 차체 및 대차프레임에 장착하여 주행안전성과 관련된 진동성능시험을 시행하였다. 본 논문은 새로 개발된 용접구조형 대차 및 이를 장착한 화차에 대해 대차프레임의 강도 검증과 화차의 안정성 여부를 판단하기 위한 시험을 시행한 결과에 대한 내용이다.(중략)

  • PDF

Study on Analysis of RTM Process to Manufacture Bogie Frame Skin Depending on Thickness (대차 프레임 스킨의 두께에 따른 RTM 공정 특성 분석 연구)

  • Kim, Moosun;Kim, Jung-Seok;Kim, Seung Mo
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.372-377
    • /
    • 2015
  • In this study, we analyzed process numerically when a bogie frame skin is manufactured by applying resin transfer molding process using composite material instead of steel. Processing time was compared based on the various thickness of bogie frame skin and the weight variation of a skin was also considered. As a result, RTM processing time decreases and the weight of a bogie reduces as the thickness of frame skin increases with the assumption that fiber volume is constant inside the skin. By considering these results as the information to estimate the production cost, trade-off between two fields, processing time and structural properties, can be performed in design optimization to produce bogie frame.

An Evaluation of Structural Integrity and Fatigue Strength for the Bogie Frame of Monorail (모노레일 대차 프레임에 대한 구조 안전성 및 피로강도 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Lee, Kwang-Seop;Lee, Eun-Gyu
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.469-475
    • /
    • 2010
  • In this paper, the structural integrity and fatigue strength for the bogie frame of Monorail being developed in domestic was evaluated. Presently, the standard of evaluation for the bogie frame of monorail was not regulated. Therefore, the evaluation of the structural integrity and fatigue strength for the bogie frame was performed on the basis of the UIC 615-4 standard. The structural integrity of the designed bogie frame was evaluated by displacement and Von-Mises stress under each load conditions. And the fatigue strength was evaluated by combined main in-service load conditions specified at UIC 615-4 standard and it was compared with result of fatigue analysis using winLIFE v3.1 with the function of batch processing. The results shows that the structural integrity and fatigue strength of the designed bogie frame was satisfied, and the fatigue analysis using batch processing was more effective than conventional fatigue analysis using combined load conditions.

Vibration Analysis of a Bogie Using Linearized Dynamic Equations of a Multibody System (다물체계의 선형 동역학식을 이용한 대차의 진동 해석)

  • Kang, Juseok
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.321-327
    • /
    • 2014
  • In this paper, linear dynamic equations are derived from nonlinear dynamic equations of constrained multibody systems using the QR decomposition method. The derived linear equations are applied to a railway vehicle bogie. The vibration characteristics of the railway vehicle are investigated by calculating the natural mode and transfer function of the bogie frame in relation to rail-roughness input. The main modes of the bogie were found below 35Hz, and the local modes above 198Hz. The magnitude of the vertical transfer function varied with the forward velocity due to vertical and pitch modes, which were influenced by the forward velocity. The magnitude of the lateral transfer function was negligibly small, and the mode in the longitudinal direction was excited for longitudinal transfer function regardless of the forward velocity.

Loading tests and strength evaluation of bogie frame for intermodal tram (인터모달 트램 대차프레임의 하중 시험 및 강도 평가)

  • Seo, Sung-il;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun;Kim, Jeong-guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.554-561
    • /
    • 2016
  • In this study, loading tests and a strength evaluation of the bogie frame were conducted to verify the structural safety of the bogie system in an intermodal tram, which runs with cars on a road track. The loads were calculated taking into account the features of the road track with many sharp curves and steep gradients, which are different from the track of conventional railway. They were compared with the loads specified in the previous standard specifications. After the comparison, it was confirmed that the loads acting on the bogie system operating on a road track are slightly different from the specified loads. The specified vertical load of the standard specification for all kinds of trains is conservative, but the specified lateral and longitudinal loads are less than the calculated loads. The application of the actual loads was proven to be reasonable in the development of a new railway system. Based on the defined loads, the bogie frame was fabricated on which strain gauges were attached. It was set on the large loading frame so that the stresses could be measured when loads were applied by hydraulic actuators. After measuring the stresses, it was shown that they were below the allowable stress, which verified the structural safety of the bogie frame.

Fatigue Strength Evaluation of Bogie Frame of Urban Maglev Train (도시형 자기부상열차 대차 프레임의 피로강도 평가)

  • Han, Jeong Woo;Kim, Heung Sub;Bang, Je Sung;Song, See Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.945-951
    • /
    • 2013
  • This study evaluated the fatigue strength of the bogie frame of an urban maglev train through fatigue analysis, cumulative damage, and fatigue tests based on a proposed fatigue evaluation method. The results of FEM analysis in which various load combinations were adopted showed that all data were under the fatigue limit of a butt welded joint made of A6005 in a Goodman diagram. The cumulative fatigue damage was calculated at the highest level from a bolt connecting the area of the electromagnetic pole in the casting block; however, the total sum was evaluated as D=0.808 based on $1{\times}10^7$ cycles, which indicates that it did not exceed the failure criteria. In addition, the results of the fatigue testshowed that there was no crack at any position in the bogie frame, which corresponded to the results of fatigue analyses.

An Evaluation of Fatigue Life and Strength of Lightweight Bogie Frame Made of Laminate Composites (경량 복합재 대차프레임의 피로수명 및 강도 평가)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Kim, Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.913-920
    • /
    • 2011
  • We describe the evaluation of the fatigue life and strength of a lightweight railway bogie frame made of glass fiber/epoxy 4-harness satin-woven composites. To obtain the S-N curve for the evaluation of the fatigue characteristics of the composite bogie frame, we performed a tension-compression fatigue test for composite specimens with different stacking sequences of the warp direction, fill direction, and $0^{\circ}/90^^{\circ}$ direction. We used a stress ratio (R) of -1, a frequency of 5 Hz, and an endurance limit of $10^7$. The fatigue strength of the composite bogie frame was evaluated by a Goodman diagram according to JIS E 4207. The results show that the fatigue life and strength of the lightweight composite bogie satisfy the requirements of JIS E 4207. Given its weight, its performance was better than that of a conventional metal bogie frame based on an SM490A steel material.

Evaluation of Dynamic Fatigue Life for Maglev Bogie Frame (자기부상열차의 동적 거동을 고려한 내구해석 기법개발)

  • Han, Sung-Wook;Woo, Kwan-Je
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • In domestic developing magnetically levitated (Maglev) vehicle, bogie frames install electromagnets which provide the vehicles to run with levitation and guidance forces; moreover, the linear motors used for traction are integrated into the same mechanical structure. This paper presents the process which predicts the evaluation of life cycle for bogie frame on various running conditions. Durability analysis considering vibration effect is simulated by using random loads resulted from dynamic simulation which takes into account the irregularities of guide rail. And it supports additional weak points which were not examined in static analysis.

Study of the performance improvement solution and bogie structure of center guided type monorail (중앙 안내방식의 모노레일 대차 구조와 성능 향상 방안에 관한 연구)

  • Kim, Jae-Min;Kim, Myung-Su;Kim, Hak-Soo;Ko, Hyung-Keun;Kim, Kyung-Han
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1249-1254
    • /
    • 2010
  • The bogie structure of center guided type monorail has been applied to Incheon Wolmi Eunha monorail at first in the world, and aluminum alloy material bogie is first ever introduced in Korea. Since bogie transfers vertical and horizontal loads to the track and guide rail as an essential system, its structure should have enough durability and secure excellent operation performance and ride quality. This study presents a suitable structure for center guided type monorail, a system combination method for bogie operation performance and riding quality, and a solution for better bogie frame durability.

  • PDF

Lightweight Design of Brake Bracket for Composite Bogie Using Topology Optimization (위상 최적 설계를 통한 복합소재 대차프레임용 제동장치 브래킷의 경량화 연구)

  • Lee, Woo Geun;Kim, Jung Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.283-289
    • /
    • 2015
  • In this study, the lightweight design of a brake bracket for a composite bogie was studied by considering two brake bracket models with thicknesses of 12t and 9t, respectively. For achieving this goal, finite element analysis and topology optimization were conducted. Firstly, the largest cross-sectional areas of the vertical and horizontal plates of the brake bracket were selected as the design variables. As the constraint, the Z-axis displacement of the brake bracket was increased by 2.5 units from the initial displacement value. The minimum volume fraction of the design regions was chosen as the objective function. The full model comprised a composite bogie frame and brackets attached together. However, to reduce the analysis time, 1D beam elements were used instead of the composite bogie frame by ensuring its equivalence with the full model. The result revealed that the weights of the 12t and 9t models of the brake bracket were reduced to 60 kg and 31 kg, respectively.